64 research outputs found

    Publications of the Jet Propulsion Laboratory, 1988

    Get PDF
    This bibliography describes and indexes by primary author the externally distributed technical reporting, released during calendar year 1988, that resulted from scientific and engineering work performed, or managed, by the Jet Propulsion Laboratory. Three classes of publications are included: JPL publications in which the information is complete for a specific accomplishment; articles from the quarterly Telecommunications and Data Acquisition (TDA) Progress Report; and articles published in the open literature

    On the correlation between GNSS-R reflectivity and L-band microwave radiometry

    Get PDF
    This work compares microwave radiometry and global navigation satellite systems-reflectometry (GNSS-R) observations using data gathered from airborne flights conducted for three different soil moisture conditions. Two different regions are analyzed, a crops region and a grassland region. For the crops region, the correlation with the I/2 (first Stokes parameter divided by two) was between 0.74 and 0.8 for large incidence angle reflectivity data (30°-50°), while it was between 0.51 and 0.61 for the grassland region and the same incidence angle conditions. For the crops region, the correlation with the I/2 was between 0.64 and 0.69 for lower incidence angle reflectivity data (<;30°), while it was between 0.41 and 0.6 for the grassland region. This indicates that for large incidence angles the coherent scattering mechanism is dominant, while the lower incidence angles are more affected by incoherent scattering. Also a relationship between the reflectivity and the polarization index (PI) is observed. The PI has been used to remove surface roughness effects, but due to its dependence on the incidence angle only the large incidence angle observations were useful. The difference in ground resolution between microwave radiometry and GNSS-R and their strong correlation suggests that they might be combined to improve the spatial resolution of microwave radiometry measurements in terms of brightness temperature and consequently soil moisture retrievals.This work was supported in part by the Spanish Ministry of Science and Innovation, “AROSA-Advanced Radio Ocultations and Scatterometry Applications using GNSS and other opportunity signals,” under Grant AYA2011-29183-C02-01/ESP and “AGORA: Tecnicas Avanzadas en Teledetección Aplicada Usando Señales GNSS y Otras Señales de Oportunidad,” under Grant ESP2015-70014-C2-1-R (MINECO/FEDER), in part by the Monash University Faculty of Engineering 2013 Seed Grant, and in part by the Advanced Remote Sensing Ground-Truth Demo and Test Facilities and Terrestrial Environmental Observatories funded by the German Helmholtz-Association. The work of A. A.-Arroyo was supported by the Fulbright Commission in Spain through a Fulbright grant.Peer ReviewedPostprint (author's final draft

     Ocean Remote Sensing with Synthetic Aperture Radar

    Get PDF
    The ocean covers approximately 71% of the Earth’s surface, 90% of the biosphere and contains 97% of Earth’s water. The Synthetic Aperture Radar (SAR) can image the ocean surface in all weather conditions and day or night. SAR remote sensing on ocean and coastal monitoring has become a research hotspot in geoscience and remote sensing. This book—Progress in SAR Oceanography—provides an update of the current state of the science on ocean remote sensing with SAR. Overall, the book presents a variety of marine applications, such as, oceanic surface and internal waves, wind, bathymetry, oil spill, coastline and intertidal zone classification, ship and other man-made objects’ detection, as well as remotely sensed data assimilation. The book is aimed at a wide audience, ranging from graduate students, university teachers and working scientists to policy makers and managers. Efforts have been made to highlight general principles as well as the state-of-the-art technologies in the field of SAR Oceanography

    Earth Resources: A continuing bibliography with indexes, issue 40

    Get PDF
    This bibliography lists 423 reports, articles, and other documents introduced into the NASA scientific and technical information system between October 1 and December 31, 1983. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Spaceborne Imaging Radar Symposium

    Get PDF
    An overview of the present state of the art in the different scientific and technological fields related to spaceborne imaging radars was presented. The data acquired with the SEASAT SAR (1978) and Shuttle Imaging Radar, SIR-A (1981) clearly demonstrated the important emphasis in the 80's is going to be on in-depth research investigations conducted with the more flexible and sophisticated SIR series instruments and on long term monitoring of geophysical phenomena conducted from free-flying platforms such as ERS-1 and RADARSAT

    NASA oceanic processes program: Status report, fiscal year 1980

    Get PDF
    Goals, philosophy, and objectives of NASA's Oceanic Processes Program are presented as well as detailed information on flight projects, sensor developments, future prospects, individual investigator tasks, and recent publications. A special feature is a group of brief descriptions prepared by leaders in the oceanographic community of how remote sensing might impact various areas of oceanography during the coming decade

    Earth Resources, A Continuing Bibliography with Indexes

    Get PDF
    This bibliography lists 460 reports, articles and other documents introduced into the NASA scientific and technical information system between July 1 and September 30, 1984. Emphasis is placed on the use of remote sensing and geophysical instrumentation in spacecraft and aircraft to survey and inventory natural resources and urban areas. Subject matter is grouped according to agriculture and forestry, environmental changes and cultural resources, geodesy and cartography, geology and mineral resources, hydrology and water management, data processing and distribution systems, instrumentation and sensors, and economical analysis

    Long-term and high-resolution global time series of brightness temperature from copula-based fusion of SMAP enhanced and SMOS data

    Get PDF
    Long and consistent soil moisture time series at adequate spatial resolution are key to foster the application of soil moisture observations and remotely-sensed products in climate and numerical weather prediction models. The two L-band soil moisture satellite missions SMAP (Soil Moisture Active Passive) and SMOS (Soil Moisture and Ocean Salinity) are able to provide soil moisture estimates on global scales and in kilometer accuracy. However, the SMOS data record has an appropriate length of 7.5 years since late 2009, but with a coarse resolution of 25km only. In contrast, a spatially-enhanced SMAP product is available at a higher resolution of 9 km, but for a shorter time period (since March 2015 only). Being the fundamental observable from passive microwave sensors, reliable brightness temperatures (Tbs) are a mandatory precondition for satellite-based soil moisture products. We therefore develop, evaluate and apply a copula-based data fusion approach for combining SMAP Enhanced (SMAP_E) and SMOS brightness Temperature (Tb) data. The approach exploits both linear and non-linear dependencies between the two satellite-based Tb products and allows one to generate conditional SMAP_E-like random samples during the pre-SMAP period. Our resulting global Copula-combined SMOS-SMAP_E (CoSMOP) Tbs are statistically consistent with SMAP_E brightness temperatures, have a spatial resolution of 9km and cover the period from 2010 to 2018. A comparison with Service Soil Climate Analysis Network (SCAN)-sites over the Contiguous United States (CONUS) domain shows that the approach successfully reduces the average RMSE of the original SMOS data by 15%. At certain locations, improvements of 40% and more can be observed. Moreover, the median NSE can be enhanced from zero to almost 0.5. Hence, CoSMOP, which will be made freely available to the public, provides a first step towards a global, long-term, high-resolution and multi-sensor brightness temperature product, and thereby, also soil moisture
    • …
    corecore