1,509 research outputs found

    Decomposing Cubic Graphs into Connected Subgraphs of Size Three

    Get PDF
    Let S={K1,3,K3,P4}S=\{K_{1,3},K_3,P_4\} be the set of connected graphs of size 3. We study the problem of partitioning the edge set of a graph GG into graphs taken from any non-empty S′⊆SS'\subseteq S. The problem is known to be NP-complete for any possible choice of S′S' in general graphs. In this paper, we assume that the input graph is cubic, and study the computational complexity of the problem of partitioning its edge set for any choice of S′S'. We identify all polynomial and NP-complete problems in that setting, and give graph-theoretic characterisations of S′S'-decomposable cubic graphs in some cases.Comment: to appear in the proceedings of COCOON 201

    Towards an Isomorphism Dichotomy for Hereditary Graph Classes

    Get PDF
    In this paper we resolve the complexity of the isomorphism problem on all but finitely many of the graph classes characterized by two forbidden induced subgraphs. To this end we develop new techniques applicable for the structural and algorithmic analysis of graphs. First, we develop a methodology to show isomorphism completeness of the isomorphism problem on graph classes by providing a general framework unifying various reduction techniques. Second, we generalize the concept of the modular decomposition to colored graphs, allowing for non-standard decompositions. We show that, given a suitable decomposition functor, the graph isomorphism problem reduces to checking isomorphism of colored prime graphs. Third, we extend the techniques of bounded color valence and hypergraph isomorphism on hypergraphs of bounded color size as follows. We say a colored graph has generalized color valence at most k if, after removing all vertices in color classes of size at most k, for each color class C every vertex has at most k neighbors in C or at most k non-neighbors in C. We show that isomorphism of graphs of bounded generalized color valence can be solved in polynomial time.Comment: 37 pages, 4 figure

    Restricted Space Algorithms for Isomorphism on Bounded Treewidth Graphs

    Get PDF
    The Graph Isomorphism problem restricted to graphs of bounded treewidth or bounded tree distance width are known to be solvable in polynomial time [Bod90],[YBFT99]. We give restricted space algorithms for these problems proving the following results: - Isomorphism for bounded tree distance width graphs is in L and thus complete for the class. We also show that for this kind of graphs a canon can be computed within logspace. - For bounded treewidth graphs, when both input graphs are given together with a tree decomposition, the problem of whether there is an isomorphism which respects the decompositions (i.e. considering only isomorphisms mapping bags in one decomposition blockwise onto bags in the other decomposition) is in L. - For bounded treewidth graphs, when one of the input graphs is given with a tree decomposition the isomorphism problem is in LogCFL. - As a corollary the isomorphism problem for bounded treewidth graphs is in LogCFL. This improves the known TC1 upper bound for the problem given by Grohe and Verbitsky [GroVer06].Comment: STACS conference 2010, 12 page

    Transversal designs and induced decompositions of graphs

    Get PDF
    We prove that for every complete multipartite graph FF there exist very dense graphs GnG_n on nn vertices, namely with as many as (n2)−cn{n\choose 2}-cn edges for all nn, for some constant c=c(F)c=c(F), such that GnG_n can be decomposed into edge-disjoint induced subgraphs isomorphic to~FF. This result identifies and structurally explains a gap between the growth rates O(n)O(n) and Ω(n3/2)\Omega(n^{3/2}) on the minimum number of non-edges in graphs admitting an induced FF-decomposition

    Rank-width and Tree-width of H-minor-free Graphs

    Get PDF
    We prove that for any fixed r>=2, the tree-width of graphs not containing K_r as a topological minor (resp. as a subgraph) is bounded by a linear (resp. polynomial) function of their rank-width. We also present refinements of our bounds for other graph classes such as K_r-minor free graphs and graphs of bounded genus.Comment: 17 page
    • …
    corecore