679 research outputs found

    Modeling and Solving Large-scale Stochastic Mixed-Integer Problems in Transportation and Power Systems

    Get PDF
    In this dissertation, various optimization problems from the area of transportation and power systems will be respectively investigated and the uncertainty will be considered in each problem. Specifically, a long-term problem of electricity infrastructure investment is studied to address the planning for capacity expansion in electrical power systems with the integration of short-term operations. The future investment costs and real-time customer demands cannot be perfectly forecasted and thus are considered to be random. Another maintenance scheduling problem is studied for power systems, particularly for natural gas fueled power plants, taking into account gas contracting and the opportunity of purchasing and selling gas in the spot market as well as the maintenance scheduling considering the uncertainty of electricity and gas prices in the spot market. In addition, different vehicle routing problems are researched seeking the route for each vehicle so that the total traveling cost is minimized subject to the constraints and uncertain parameters in corresponding transportation systems. The investigation of each problem in this dissertation mainly consists of two parts, i.e., the formulation of its mathematical model and the development of solution algorithm for solving the model. The stochastic programming is applied as the framework to model each problem and address the uncertainty, while the approach of dealing with the randomness varies in terms of the relationships between the uncertain elements and objective functions or constraints. All the problems will be modeled as stochastic mixed-integer programs, and the huge numbers of involved decision variables and constraints make each problem large-scale and very difficult to manage. In this dissertation, efficient algorithms are developed for these problems in the context of advanced methodologies of optimization and operations research, such as branch and cut, benders decomposition, column generation and Lagrangian method. Computational experiments are implemented for each problem and the results will be present and discussed. The research carried out in this dissertation would be beneficial to both researchers and practitioners seeking to model and solve similar optimization problems in transportation and power systems when uncertainty is involved

    Routing Optimization Under Uncertainty

    Get PDF
    We consider a class of routing optimization problems under uncertainty in which all decisions are made before the uncertainty is realized. The objective is to obtain optimal routing solutions that would, as much as possible, adhere to a set of specified requirements after the uncertainty is realized. These problems include finding an optimal routing solution to meet the soft time window requirements at a subset of nodes when the travel time is uncertain, and sending multiple capacitated vehicles to different nodes to meet the customers’ uncertain demands. We introduce a precise mathematical framework for defining and solving such routing problems. In particular, we propose a new decision criterion, called the Requirements Violation (RV) Index, which quantifies the risk associated with the violation of requirements taking into account both the frequency of violations and their magnitudes whenever they occur. The criterion can handle instances when probability distributions are known, and ambiguity when distributions are partially characterized through descriptive statistics such as moments. We develop practically efficient algorithms involving Benders decomposition to find the exact optimal routing solution in which the RV Index criterion is minimized, and we give numerical results from several computational studies that show the attractive performance of the solutions

    The Traveling Salesman Problem with Stochastic and Correlated Customers

    Get PDF
    It is well-known that the cost of parcel delivery can be reduced by designingroutes that take into account the uncertainty surrounding customers’ presences. Thus far, routing problems with stochastic customer presences have relied on the assumption that all customer presences are independent from each other. However, the notion that demographic factors retain predictive power for parcel-delivery efficiency suggests that shared characteristics can be exploited to map dependencies between customer presences. This paper introduces the correlated probabilistic traveling salesman problem (CPTSP). The CPTSP generalizes the traveling salesman problem with stochastic customer presences, also known as the probabilistic traveling salesman problem (PTSP), to account for potentialcorrelations between customer presences. I propose a generic and flexible model formulation for the CPTSP using copulas that maintains computational and mathematical tractability in high-dimensional settings. I also present several adaptations of existing exact and heuristic frameworks to solve the CPTSP effectively. Computational experiments on real-world parcel-delivery data reveal that correlations between stochastic customer presences do not always affect route decisions, but could have a considerable impact on route costestimates

    Parallel local search

    Get PDF

    A concise guide to existing and emerging vehicle routing problem variants

    Get PDF
    Vehicle routing problems have been the focus of extensive research over the past sixty years, driven by their economic importance and their theoretical interest. The diversity of applications has motivated the study of a myriad of problem variants with different attributes. In this article, we provide a concise overview of existing and emerging problem variants. Models are typically refined along three lines: considering more relevant objectives and performance metrics, integrating vehicle routing evaluations with other tactical decisions, and capturing fine-grained yet essential aspects of modern supply chains. We organize the main problem attributes within this structured framework. We discuss recent research directions and pinpoint current shortcomings, recent successes, and emerging challenges

    Exact Algorithms for Mixed-Integer Multilevel Programming Problems

    Get PDF
    We examine multistage optimization problems, in which one or more decision makers solve a sequence of interdependent optimization problems. In each stage the corresponding decision maker determines values for a set of variables, which in turn parameterizes the subsequent problem by modifying its constraints and objective function. The optimization literature has covered multistage optimization problems in the form of bilevel programs, interdiction problems, robust optimization, and two-stage stochastic programming. One of the main differences among these research areas lies in the relationship between the decision makers. We analyze the case in which the decision makers are self-interested agents seeking to optimize their own objective function (bilevel programming), the case in which the decision makers are opponents working against each other, playing a zero-sum game (interdiction), and the case in which the decision makers are cooperative agents working towards a common goal (two-stage stochastic programming). Traditional exact approaches for solving multistage optimization problems often rely on strong duality either for the purpose of achieving single-level reformulations of the original multistage problems, or for the development of cutting-plane approaches similar to Benders\u27 decomposition. As a result, existing solution approaches usually assume that the last-stage problems are linear or convex, and fail to solve problems for which the last-stage is nonconvex (e.g., because of the presence of discrete variables). We contribute exact finite algorithms for bilevel mixed-integer programs, three-stage defender-attacker-defender problems, and two-stage stochastic programs. Moreover, we do not assume linearity or convexity for the last-stage problem and allow the existence of discrete variables. We demonstrate how our proposed algorithms significantly outperform existing state-of-the-art algorithms. Additionally, we solve for the first time a class of interdiction and fortification problems in which the third-stage problem is NP-hard, opening a venue for new research and applications in the field of (network) interdiction

    Mathematical Modelling for Load Balancing and Minimization of Coordination Losses in Multirobot Stations

    Get PDF
    The automotive industry is moving from mass production towards an individualized production, in order to improve product quality and reduce costs and material waste. This thesis concerns aspects of load balancing of industrial robots in the automotive manufacturing industry, considering efficient algorithms required by an individualized production. The goal of the load balancing problem is to improve the equipment utilization. Several approaches for solving the load balancing problem are presented along with details on mathematical tools and subroutines employed.Our contributions to the solution of the load balancing problem are manifold. First, to circumvent robot coordination we have constructed disjoint robot programs, which require no coordination schemes, are more flexible, admit competitive cycle times for some industrial instances, and may be preferred in an individualized production. Second, since solving the task assignment problem for generating the disjoint robot programs was found to be unreasonably time-consuming, we modelled it as a generalized unrelated parallel machine problem with set packing constraints and suggested a tighter model formulation, which was proven to be much more tractable for a branch--and--cut solver. Third, within continuous collision detection it needs to be determined whether the sweeps of multiple moving robots are disjoint. Our solution uses the maximum velocity of each robot along with distance computations at certain robot configurations to derive a function that provides lower bounds on the minimum distance between the sweeps. The lower bounding function is iteratively minimized and updated with new distance information; our method is substantially faster than previously developed methods
    • …
    corecore