74,609 research outputs found

    Decomposition of select expressions

    Get PDF
    A select operation that is part of an expression applying to a relational database is decomposed into one or more independent select operations for the purpose of optimising the relational expression. The select expression is treated as a logical expression. From the canonical form of this expression an optimal conjunctive form is obtained which can be decomposed into separate select operations. These separate selects can then be moved to the most effective place within the relational expression. The method also eliminates redundancy in the original expression. A prototype has been used in developing the optimisation method; from this prototype an implementation for use in an actual system has been derived

    Advanced service monitoring configurations with SLA decomposition and selection

    Get PDF
    Service Level Agreements (SLAs) for Software Services aim to clearly identify the service level commitments established between service requesters and providers. The commitments that are agreed however can be expressed in complex notations through a combination of expressions that need to evaluated and monitored efficiently. The dynamic allocation of the responsibility for monitoring SLAs (and often different parts within them) to different monitoring components is necessary as both SLAs and the components available for monitoring them may change dynamically during the operation of a service based system. In this paper we discuss an approach to supporting this dynamic configuration, and in particular, how SLAs expressed in higher-level notations can be efficiently decomposed and appropriate monitoring components dynamically allocated for each part of the agreements. The approach is illustrated with mechanical support in the form of a configuration service which can be incorporated into SLA-based service monitoring infrastructures

    Three-dimensional shapelets and an automated classification scheme for dark matter haloes

    Full text link
    We extend the two-dimensional Cartesian shapelet formalism to d-dimensions. Concentrating on the three-dimensional case, we derive shapelet-based equations for the mass, centroid, root-mean-square radius, and components of the quadrupole moment and moment of inertia tensors. Using cosmological N-body simulations as an application domain, we show that three-dimensional shapelets can be used to replicate the complex sub-structure of dark matter halos and demonstrate the basis of an automated classification scheme for halo shapes. We investigate the shapelet decomposition process from an algorithmic viewpoint, and consider opportunities for accelerating the computation of shapelet-based representations using graphics processing units (GPUs).Comment: 19 pages, 11 figures, accepted for publication in MNRA

    CML: the commonKADS conceptual modelling language

    Get PDF
    We present a structured language for the specification of knowledge models according to the CommonKADS methodology. This language is called CML (Conceptual Modelling Language) and provides both a structured textual notation and a diagrammatic notation for expertise models. The use of our CML is illustrated by a variety of examples taken from the VT elevator design system
    • …
    corecore