157 research outputs found

    Construction of interpolating and orthonormal multigenerators and multiwavelets on the interval

    Get PDF
    In den letzten Jahren haben sich Wavelets zu einem hochwertigen Hilfsmittel in der angewandten Mathematik entwickelt. Eine Waveletbasis ist im Allgemeinen ein System von Funktionen, das durch die Skalierung, Translation und Dilatation einer endlichen Menge von Funktionen, den sogenannten Mutterwavelets, entsteht. Wavelets wurden sehr erfolgreich in der digitalen Signal- und Bildanalyse, z. B. zur Datenkompression verwendet. Ein weiteres wichtiges Anwendungsfeld ist die Analyse und die numerische Behandlung von Operatorgleichungen. Insbesondere ist es gelungen, adaptive numerische Algorithmen basierend auf Wavelets für eine riesige Klasse von Operatorgleichungen, einschließlich Operatoren mit negativer Ordnung, zu entwickeln. Der Erfolg der Wavelet- Algorithmen ergibt sich als Konsequenz der folgenden Fakten: - Gewichtete Folgennormen von Wavelet-Expansionskoeffizienten sind in einem bestimmten Bereich (abhängig von der Regularität der Wavelets) äquivalent zu Glättungsnormen wie Besov- oder Sobolev-Normen. - Für eine breite Klasse von Operatoren ist ihre Darstellung in Wavelet-Koordinaten nahezu diagonal. - Die verschwindenden Momente von Wavelets entfernen den glatten Teil einer Funktion und führen zu sehr effizienten Komprimierungsstrategien. Diese Fakten können z. B. verwendet werden, um adaptive numerische Strategien mit optimaler Konvergenzgeschwindigkeit zu konstruieren, in dem Sinne, dass diese Algorithmen die Konvergenzordnung der besten N-Term-Approximationsschemata realisieren. Die maßgeblichen Ergebnisse lassen sich für lineare, symmetrische, elliptische Operatorgleichungen erzielen. Es existiert auch eine Verallgemeinerung für nichtlineare elliptische Gleichungen. Hier verbirgt sich jedoch eine ernste Schwierigkeit: Jeder numerische Algorithmus für diese Gleichungen erfordert die Auswertung eines nichtlinearen Funktionals, welches auf eine Wavelet-Reihe angewendet wird. Obwohl einige sehr ausgefeilte Algorithmen existieren, erweisen sie sich als ziemlich langsam in der Praxis. In neueren Studien wurde gezeigt, dass dieses Problem durch sogenannte Interpolanten verbessert werden kann. Dabei stellt sich heraus, dass die meisten bekannten Basen der Interpolanten keine stabilen Basen in L2[a,b] bilden. In der vorliegenden Arbeit leisten wir einen wesentlichen Beitrag zu diesem Problem und konstruieren neue Familien von Interpolanten auf beschränkten Gebieten, die nicht nur interpolierend, sondern auch stabil in L2[a,b] sind. Da dies mit nur einem Generator schwer (oder vielleicht sogar unmöglich) zu erreichen ist, werden wir mit Multigeneratoren und Multiwavelets arbeiten.In recent years, wavelets have become a very powerful tools in applied mathematics. In general, a wavelet basis is a system of functions that is generated by scaling, translating and dilating a finite set of functions, the so-called mother wavelets. Wavelets have been very successfully applied in image/signal analysis, e.g., for denoising and compression purposes. Another important field of applications is the analysis and the numerical treatment of operator equations. In particular, it has been possible to design adaptive numerical algorithms based on wavelets for a huge class of operator equations including operators of negative order. The success of wavelet algorithms is an ultimative consequence of the following facts: - Weighted sequence norms of wavelet expansion coefficients are equivalent in a certain range (depending on the regularity of the wavelets) to smoothness norms such as Besov or Sobolev norms. - For a wide class of operators their representation in wavelet coordinates is nearly diagonal. -The vanishing moments of wavelets remove the smooth part of a function. These facts can, e.g., be used to construct adaptive numerical strategies that are guaranteed to converge with optimal order, in the sense that these algorithms realize the convergence order of best N-term approximation schemes. The most far-reaching results have been obtained for linear, symmetric elliptic operator equations. Generalization to nonlinear elliptic equations also exist. However, then one is faced with a serious bottleneck: every numerical algorithm for these equations requires the evaluation of a nonlinear functional applied to a wavelet series. Although some very sophisticated algorithms exist, they turn out to perform quite slowly in practice. In recent studies, it has been shown that this problem can be ameliorated by means of so called interpolants. However, then the problem occurs that most of the known bases of interpolants do not form stable bases in L2[a,b]. In this PhD project, we intend to provide a significant contribution to this problem. We want to construct new families of interpolants on domains that are not only interpolating, but also stable in L2[a,b]or even orthogonal. Since this is hard to achieve (or maybe even impossible) with just one generator, we worked with multigenerators and multiwavelets
    corecore