421 research outputs found

    Cooperative Decentralized Multi-agent Control under Local LTL Tasks and Connectivity Constraints

    Full text link
    We propose a framework for the decentralized control of a team of agents that are assigned local tasks expressed as Linear Temporal Logic (LTL) formulas. Each local LTL task specification captures both the requirements on the respective agent's behavior and the requests for the other agents' collaborations needed to accomplish the task. Furthermore, the agents are subject to communication constraints. The presented solution follows the automata-theoretic approach to LTL model checking, however, it avoids the computationally demanding construction of synchronized product system between the agents. We suggest a decentralized coordination among the agents through a dynamic leader-follower scheme, to guarantee the low-level connectivity maintenance at all times and a progress towards the satisfaction of the leader's task. By a systematic leader switching, we ensure that each agent's task will be accomplished.Comment: full version of CDC 2014 submissio

    Cooperative Task Planning of Multi-Agent Systems Under Timed Temporal Specifications

    Full text link
    In this paper the problem of cooperative task planning of multi-agent systems when timed constraints are imposed to the system is investigated. We consider timed constraints given by Metric Interval Temporal Logic (MITL). We propose a method for automatic control synthesis in a two-stage systematic procedure. With this method we guarantee that all the agents satisfy their own individual task specifications as well as that the team satisfies a team global task specification.Comment: Submitted to American Control Conference 201

    Signal Temporal Logic Task Decomposition via Convex Optimization

    Full text link
    In this paper we focus on the problem of decomposing a global Signal Temporal Logic formula (STL) assigned to a multi-agent system to local STL tasks when the team of agents is a-priori decomposed to disjoint sub-teams. The predicate functions associated to the local tasks are parameterized as hypercubes depending on the states of the agents in a given sub-team. The parameters of the functions are, then, found as part of the solution of a convex program that aims implicitly at maximizing the volume of the zero level-set of the corresponding predicate function. Two alternative definitions of the local STL tasks are proposed and the satisfaction of the global STL formula is proven when the conjunction of the local STL tasks is satisfied.Comment: 6 pages, 6 figure
    • …
    corecore