341 research outputs found

    Regular graphs of odd degree are antimagic

    Full text link
    An antimagic labeling of a graph GG with mm edges is a bijection from E(G)E(G) to {1,2,,m}\{1,2,\ldots,m\} such that for all vertices uu and vv, the sum of labels on edges incident to uu differs from that for edges incident to vv. Hartsfield and Ringel conjectured that every connected graph other than the single edge K2K_2 has an antimagic labeling. We prove this conjecture for regular graphs of odd degree.Comment: 5 page

    Decomposing dense bipartite graphs into 4-cycles

    Get PDF
    Let G be an even bipartite graph with partite sets X and Y such that |Y | is even and the minimum degree of a vertex in Y is at least 95|X|/96. Suppose furthermore that the number of edges in G is divisible by 4. Then G decomposes into 4-cycles

    The mixing time of the switch Markov chains: a unified approach

    Get PDF
    Since 1997 a considerable effort has been spent to study the mixing time of switch Markov chains on the realizations of graphic degree sequences of simple graphs. Several results were proved on rapidly mixing Markov chains on unconstrained, bipartite, and directed sequences, using different mechanisms. The aim of this paper is to unify these approaches. We will illustrate the strength of the unified method by showing that on any PP-stable family of unconstrained/bipartite/directed degree sequences the switch Markov chain is rapidly mixing. This is a common generalization of every known result that shows the rapid mixing nature of the switch Markov chain on a region of degree sequences. Two applications of this general result will be presented. One is an almost uniform sampler for power-law degree sequences with exponent γ>1+3\gamma>1+\sqrt{3}. The other one shows that the switch Markov chain on the degree sequence of an Erd\H{o}s-R\'enyi random graph G(n,p)G(n,p) is asymptotically almost surely rapidly mixing if pp is bounded away from 0 and 1 by at least 5lognn1\frac{5\log n}{n-1}.Comment: Clarification
    corecore