6,691 research outputs found

    Approximation Schemes for Partitioning: Convex Decomposition and Surface Approximation

    Full text link
    We revisit two NP-hard geometric partitioning problems - convex decomposition and surface approximation. Building on recent developments in geometric separators, we present quasi-polynomial time algorithms for these problems with improved approximation guarantees.Comment: 21 pages, 6 figure

    On k-Convex Polygons

    Get PDF
    We introduce a notion of kk-convexity and explore polygons in the plane that have this property. Polygons which are \mbox{kk-convex} can be triangulated with fast yet simple algorithms. However, recognizing them in general is a 3SUM-hard problem. We give a characterization of \mbox{22-convex} polygons, a particularly interesting class, and show how to recognize them in \mbox{O(nlogn)O(n \log n)} time. A description of their shape is given as well, which leads to Erd\H{o}s-Szekeres type results regarding subconfigurations of their vertex sets. Finally, we introduce the concept of generalized geometric permutations, and show that their number can be exponential in the number of \mbox{22-convex} objects considered.Comment: 23 pages, 19 figure

    Approximating the Maximum Overlap of Polygons under Translation

    Full text link
    Let PP and QQ be two simple polygons in the plane of total complexity nn, each of which can be decomposed into at most kk convex parts. We present an (1ε)(1-\varepsilon)-approximation algorithm, for finding the translation of QQ, which maximizes its area of overlap with PP. Our algorithm runs in O(cn)O(c n) time, where cc is a constant that depends only on kk and ε\varepsilon. This suggest that for polygons that are "close" to being convex, the problem can be solved (approximately), in near linear time

    Distance-Sensitive Planar Point Location

    Get PDF
    Let S\mathcal{S} be a connected planar polygonal subdivision with nn edges that we want to preprocess for point-location queries, and where we are given the probability γi\gamma_i that the query point lies in a polygon PiP_i of S\mathcal{S}. We show how to preprocess S\mathcal{S} such that the query time for a point~pPip\in P_i depends on~γi\gamma_i and, in addition, on the distance from pp to the boundary of~PiP_i---the further away from the boundary, the faster the query. More precisely, we show that a point-location query can be answered in time O(min(logn,1+logarea(Pi)γiΔp2))O\left(\min \left(\log n, 1 + \log \frac{\mathrm{area}(P_i)}{\gamma_i \Delta_{p}^2}\right)\right), where Δp\Delta_{p} is the shortest Euclidean distance of the query point~pp to the boundary of PiP_i. Our structure uses O(n)O(n) space and O(nlogn)O(n \log n) preprocessing time. It is based on a decomposition of the regions of S\mathcal{S} into convex quadrilaterals and triangles with the following property: for any point pPip\in P_i, the quadrilateral or triangle containing~pp has area Ω(Δp2)\Omega(\Delta_{p}^2). For the special case where S\mathcal{S} is a subdivision of the unit square and γi=area(Pi)\gamma_i=\mathrm{area}(P_i), we present a simpler solution that achieves a query time of O(min(logn,log1Δp2))O\left(\min \left(\log n, \log \frac{1}{\Delta_{p}^2}\right)\right). The latter solution can be extended to convex subdivisions in three dimensions

    Polygon scheduling

    Get PDF
    Consider a set of circles of the same length and r irregular polygons with vertices on a circle of this length. Each of the polygons has to be arranged on a given subset of all circles and the positions of the polygon on the different circles are depending on each other. How should the polygons be arranged relative to each other to minimize some criterion function depending on the distances between adjacent vertices on all circles? A decomposition of the set of all arrangements of the polygons into local regions in which the optimization problem is convex is given. An exact description of the local regions and a sharp bound on the number of local regions are derived. For the criterion functions minimizing the maximum weighted distance, maximizing the minimum weighted distance, and minimizing the sum of weighted distances the local optimization problems can be reduced to polynomially solvable network flow problems

    The performance of object decomposition techniques for spatial query processing

    Get PDF
    corecore