18,270 research outputs found

    On the decomposition of Generalized Additive Independence models

    Full text link
    The GAI (Generalized Additive Independence) model proposed by Fishburn is a generalization of the additive utility model, which need not satisfy mutual preferential independence. Its great generality makes however its application and study difficult. We consider a significant subclass of GAI models, namely the discrete 2-additive GAI models, and provide for this class a decomposition into nonnegative monotone terms. This decomposition allows a reduction from exponential to quadratic complexity in any optimization problem involving discrete 2-additive models, making them usable in practice

    Folner tilings for actions of amenable groups

    Full text link
    We show that every probability-measure-preserving action of a countable amenable group G can be tiled, modulo a null set, using finitely many finite subsets of G ("shapes") with prescribed approximate invariance so that the collection of tiling centers for each shape is Borel. This is a dynamical version of the Downarowicz--Huczek--Zhang tiling theorem for countable amenable groups and strengthens the Ornstein--Weiss Rokhlin lemma. As an application we prove that, for every countably infinite amenable group G, the crossed product of a generic free minimal action of G on the Cantor set is Z-stable.Comment: Minor revisions. Final versio

    Online Convex Optimization for Sequential Decision Processes and Extensive-Form Games

    Full text link
    Regret minimization is a powerful tool for solving large-scale extensive-form games. State-of-the-art methods rely on minimizing regret locally at each decision point. In this work we derive a new framework for regret minimization on sequential decision problems and extensive-form games with general compact convex sets at each decision point and general convex losses, as opposed to prior work which has been for simplex decision points and linear losses. We call our framework laminar regret decomposition. It generalizes the CFR algorithm to this more general setting. Furthermore, our framework enables a new proof of CFR even in the known setting, which is derived from a perspective of decomposing polytope regret, thereby leading to an arguably simpler interpretation of the algorithm. Our generalization to convex compact sets and convex losses allows us to develop new algorithms for several problems: regularized sequential decision making, regularized Nash equilibria in extensive-form games, and computing approximate extensive-form perfect equilibria. Our generalization also leads to the first regret-minimization algorithm for computing reduced-normal-form quantal response equilibria based on minimizing local regrets. Experiments show that our framework leads to algorithms that scale at a rate comparable to the fastest variants of counterfactual regret minimization for computing Nash equilibrium, and therefore our approach leads to the first algorithm for computing quantal response equilibria in extremely large games. Finally we show that our framework enables a new kind of scalable opponent exploitation approach

    Decomposition Strategies for Constructive Preference Elicitation

    Full text link
    We tackle the problem of constructive preference elicitation, that is the problem of learning user preferences over very large decision problems, involving a combinatorial space of possible outcomes. In this setting, the suggested configuration is synthesized on-the-fly by solving a constrained optimization problem, while the preferences are learned itera tively by interacting with the user. Previous work has shown that Coactive Learning is a suitable method for learning user preferences in constructive scenarios. In Coactive Learning the user provides feedback to the algorithm in the form of an improvement to a suggested configuration. When the problem involves many decision variables and constraints, this type of interaction poses a significant cognitive burden on the user. We propose a decomposition technique for large preference-based decision problems relying exclusively on inference and feedback over partial configurations. This has the clear advantage of drastically reducing the user cognitive load. Additionally, part-wise inference can be (up to exponentially) less computationally demanding than inference over full configurations. We discuss the theoretical implications of working with parts and present promising empirical results on one synthetic and two realistic constructive problems.Comment: Accepted at the Thirty-Second AAAI Conference on Artificial Intelligence (AAAI-18

    Laboratory Games and Quantum Behaviour: The Normal Form with a Separable State Space

    Get PDF
    The subjective expected utility (SEU) criterion is formulated for a particular four-person “laboratory game” that a Bayesian rational decision maker plays with Nature, Chance, and an Experimenter who influences what quantum behaviour is observable by choosing an orthonormal basis in a separable complex Hilbert space of latent variables. Nature chooses a state in this basis, along with an observed data series governing Chance's random choice of consequence. When Gleason's theorem holds, imposing quantum equivalence implies that the expected likelihood of any data series w.r.t. prior beliefs equals the trace of the product of appropriate subjective density and likelihood operators.

    The continuous behavior of the numeraire portfolio under small changes in information structure, probabilistic views and investment constraints

    Get PDF
    The numeraire portfolio in a financial market is the unique positive wealth process that makes all other nonnegative wealth processes, when deflated by it, supermartingales. The numeraire portfolio depends on market characteristics, which include: (a) the information flow available to acting agents, given by a filtration; (b) the statistical evolution of the asset prices and, more generally, the states of nature, given by a probability measure; and (c) possible restrictions that acting agents might be facing on available investment strategies, modeled by a constraints set. In a financial market with continuous-path asset prices, we establish the stable behavior of the numeraire portfolio when each of the aforementioned market parameters is changed in an infinitesimal way.Comment: 16 pages; revised versio
    • 

    corecore