9,289 research outputs found

    Approximately Counting Embeddings into Random Graphs

    Get PDF
    Let H be a graph, and let C_H(G) be the number of (subgraph isomorphic) copies of H contained in a graph G. We investigate the fundamental problem of estimating C_H(G). Previous results cover only a few specific instances of this general problem, for example, the case when H has degree at most one (monomer-dimer problem). In this paper, we present the first general subcase of the subgraph isomorphism counting problem which is almost always efficiently approximable. The results rely on a new graph decomposition technique. Informally, the decomposition is a labeling of the vertices such that every edge is between vertices with different labels and for every vertex all neighbors with a higher label have identical labels. The labeling implicitly generates a sequence of bipartite graphs which permits us to break the problem of counting embeddings of large subgraphs into that of counting embeddings of small subgraphs. Using this method, we present a simple randomized algorithm for the counting problem. For all decomposable graphs H and all graphs G, the algorithm is an unbiased estimator. Furthermore, for all graphs H having a decomposition where each of the bipartite graphs generated is small and almost all graphs G, the algorithm is a fully polynomial randomized approximation scheme. We show that the graph classes of H for which we obtain a fully polynomial randomized approximation scheme for almost all G includes graphs of degree at most two, bounded-degree forests, bounded-length grid graphs, subdivision of bounded-degree graphs, and major subclasses of outerplanar graphs, series-parallel graphs and planar graphs, whereas unbounded-length grid graphs are excluded.Comment: Earlier version appeared in Random 2008. Fixed an typo in Definition 3.

    Hamilton cycles in graphs and hypergraphs: an extremal perspective

    Full text link
    As one of the most fundamental and well-known NP-complete problems, the Hamilton cycle problem has been the subject of intensive research. Recent developments in the area have highlighted the crucial role played by the notions of expansion and quasi-randomness. These concepts and other recent techniques have led to the solution of several long-standing problems in the area. New aspects have also emerged, such as resilience, robustness and the study of Hamilton cycles in hypergraphs. We survey these developments and highlight open problems, with an emphasis on extremal and probabilistic approaches.Comment: to appear in the Proceedings of the ICM 2014; due to given page limits, this final version is slightly shorter than the previous arxiv versio

    Hamilton decompositions of regular expanders: applications

    Get PDF
    In a recent paper, we showed that every sufficiently large regular digraph G on n vertices whose degree is linear in n and which is a robust outexpander has a decomposition into edge-disjoint Hamilton cycles. The main consequence of this theorem is that every regular tournament on n vertices can be decomposed into (n-1)/2 edge-disjoint Hamilton cycles, whenever n is sufficiently large. This verified a conjecture of Kelly from 1968. In this paper, we derive a number of further consequences of our result on robust outexpanders, the main ones are the following: (i) an undirected analogue of our result on robust outexpanders; (ii) best possible bounds on the size of an optimal packing of edge-disjoint Hamilton cycles in a graph of minimum degree d for a large range of values for d. (iii) a similar result for digraphs of given minimum semidegree; (iv) an approximate version of a conjecture of Nash-Williams on Hamilton decompositions of dense regular graphs; (v) the observation that dense quasi-random graphs are robust outexpanders; (vi) a verification of the `very dense' case of a conjecture of Frieze and Krivelevich on packing edge-disjoint Hamilton cycles in random graphs; (vii) a proof of a conjecture of Erdos on the size of an optimal packing of edge-disjoint Hamilton cycles in a random tournament.Comment: final version, to appear in J. Combinatorial Theory
    • …
    corecore