1,053 research outputs found

    The Tutte-Grothendieck group of a convergent alphabetic rewriting system

    Get PDF
    The two operations, deletion and contraction of an edge, on multigraphs directly lead to the Tutte polynomial which satisfies a universal problem. As observed by Brylawski in terms of order relations, these operations may be interpreted as a particular instance of a general theory which involves universal invariants like the Tutte polynomial, and a universal group, called the Tutte-Grothendieck group. In this contribution, Brylawski's theory is extended in two ways: first of all, the order relation is replaced by a string rewriting system, and secondly, commutativity by partial commutations (that permits a kind of interpolation between non commutativity and full commutativity). This allows us to clarify the relations between the semigroup subject to rewriting and the Tutte-Grothendieck group: the later is actually the Grothendieck group completion of the former, up to the free adjunction of a unit (this was even not mention by Brylawski), and normal forms may be seen as universal invariants. Moreover we prove that such universal constructions are also possible in case of a non convergent rewriting system, outside the scope of Brylawski's work.Comment: 17 page

    Transitive Hall sets

    Get PDF
    We give the definition of Lazard and Hall sets in the context of transitive factorizations of free monoids. The equivalence of the two properties is proved. This allows to build new effective bases of free partially commutative Lie algebras. The commutation graphs for which such sets exist are completely characterized and we explicit, in this context, the classical PBW rewriting process

    Quantum Orthogonal Planes: ISO_{q,r}(N) and SO_{q,r}(N) -- Bicovariant Calculi and Differential Geometry on Quantum Minkowski Space

    Full text link
    We construct differential calculi on multiparametric quantum orthogonal planes in any dimension N. These calculi are bicovariant under the action of the full inhomogeneous (multiparametric) quantum group ISO_{q,r}(N), and do contain dilatations. If we require bicovariance only under the quantum orthogonal group SO_{q,r}(N), the calculus on the q-plane can be expressed in terms of its coordinates x^a, differentials dx^a and partial derivatives \partial_a without the need of dilatations, thus generalizing known results to the multiparametric case. Using real forms that lead to the signature (n+1,m) with m = n-1, n, n+1 , we find ISO_{q,r}(n+1, m) and SO_{q,r}(n+1,m) bicovariant calculi on the multiparametric quantum spaces. The particular case of the quantum Minkowski space ISO_{q,r}(3,1)/SO_{q,r}(3,1) is treated in detail. The conjugated partial derivatives \partial_a* can be expressed as linear combinations of the \partial_a. This allows a deformation of the phase-space where no additional operators (besides x^a and p_a) are needed.Comment: LaTeX, 36 pages. Considered more real forms, added some explicit formulas, used simpler definition of hermitean momenta. To be published in European Phys. Jou.

    Revisiting the Duality of Computation: An Algebraic Analysis of Classical Realizability Models

    Get PDF
    • …
    corecore