4,846 research outputs found

    Query processing of geometric objects with free form boundarie sin spatial databases

    Get PDF
    The increasing demand for the use of database systems as an integrating factor in CAD/CAM applications has necessitated the development of database systems with appropriate modelling and retrieval capabilities. One essential problem is the treatment of geometric data which has led to the development of spatial databases. Unfortunately, most proposals only deal with simple geometric objects like multidimensional points and rectangles. On the other hand, there has been a rapid development in the field of representing geometric objects with free form curves or surfaces, initiated by engineering applications such as mechanical engineering, aviation or astronautics. Therefore, we propose a concept for the realization of spatial retrieval operations on geometric objects with free form boundaries, such as B-spline or Bezier curves, which can easily be integrated in a database management system. The key concept is the encapsulation of geometric operations in a so-called query processor. First, this enables the definition of an interface allowing the integration into the data model and the definition of the query language of a database system for complex objects. Second, the approach allows the use of an arbitrary representation of the geometric objects. After a short description of the query processor, we propose some representations for free form objects determined by B-spline or Bezier curves. The goal of efficient query processing in a database environment is achieved using a combination of decomposition techniques and spatial access methods. Finally, we present some experimental results indicating that the performance of decomposition techniques is clearly superior to traditional query processing strategies for geometric objects with free form boundaries

    The potential application of the blackboard model of problem solving to multidisciplinary design

    Get PDF
    The potential application of the blackboard model of problem solving to multidisciplinary design is discussed. Multidisciplinary design problems are complex, poorly structured, and lack a predetermined decision path from the initial starting point to the final solution. The final solution is achieved using data from different engineering disciplines. Ideally, for the final solution to be the optimum solution, there must be a significant amount of communication among the different disciplines plus intradisciplinary and interdisciplinary optimization. In reality, this is not what happens in today's sequential approach to multidisciplinary design. Therefore it is highly unlikely that the final solution is the true optimum solution from an interdisciplinary optimization standpoint. A multilevel decomposition approach is suggested as a technique to overcome the problems associated with the sequential approach, but no tool currently exists with which to fully implement this technique. A system based on the blackboard model of problem solving appears to be an ideal tool for implementing this technique because it offers an incremental problem solving approach that requires no a priori determined reasoning path. Thus it has the potential of finding a more optimum solution for the multidisciplinary design problems found in today's aerospace industries

    Compensation methods to support generic graph editing: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work, and workflow systems. However, compensation operations are often simply written as a^−1 in transaction model literature. This notation ignores any operation parameters, results, and side effects. A schema designer intending to use an advanced transaction model is expected (required) to write correct method code. However, in the days of cut-and-paste, this is much easier said than done. In this paper, we demonstrate the feasibility of using an off-the-shelf theorem prover (also called a proof assistant) to perform automated verification of compensation requirements for an OODB schema. We report on the results of a case study in verification for a particular advanced transaction model that supports cooperative applications. The case study is based on an OODB schema that provides generic graph editing functionality for the creation, insertion, and manipulation of nodes and links

    Authorization and access control of application data in Workflow systems

    Get PDF
    Workflow Management Systems (WfMSs) are used to support the modeling and coordinated execution of business processes within an organization or across organizational boundaries. Although some research efforts have addressed requirements for authorization and access control for workflow systems, little attention has been paid to the requirements as they apply to application data accessed or managed by WfMSs. In this paper, we discuss key access control requirements for application data in workflow applications using examples from the healthcare domain, introduce a classification of application data used in workflow systems by analyzing their sources, and then propose a comprehensive data authorization and access control mechanism for WfMSs. This involves four aspects: role, task, process instance-based user group, and data content. For implementation, a predicate-based access control method is used. We believe that the proposed model is applicable to workflow applications and WfMSs with diverse access control requirements

    Compensation methods to support cooperative applications: A case study in automated verification of schema requirements for an advanced transaction model

    Get PDF
    Compensation plays an important role in advanced transaction models, cooperative work and workflow systems. A schema designer is typically required to supply for each transaction another transaction to semantically undo the effects of . Little attention has been paid to the verification of the desirable properties of such operations, however. This paper demonstrates the use of a higher-order logic theorem prover for verifying that compensating transactions return a database to its original state. It is shown how an OODB schema is translated to the language of the theorem prover so that proofs can be performed on the compensating transactions

    Distributing Object-Oriented Systems

    Get PDF

    Object-oriented querying of existing relational databases

    Get PDF
    In this paper, we present algorithms which allow an object-oriented querying of existing relational databases. Our goal is to provide an improved query interface for relational systems with better query facilities than SQL. This seems to be very important since, in real world applications, relational systems are most commonly used and their dominance will remain in the near future. To overcome the drawbacks of relational systems, especially the poor query facilities of SQL, we propose a schema transformation and a query translation algorithm. The schema transformation algorithm uses additional semantic information to enhance the relational schema and transform it into a corresponding object-oriented schema. If the additional semantic information can be deducted from an underlying entity-relationship design schema, the schema transformation may be done fully automatically. To query the created object-oriented schema, we use the Structured Object Query Language (SOQL) which provides declarative query facilities on objects. SOQL queries using the created object-oriented schema are much shorter, easier to write and understand and more intuitive than corresponding S Q L queries leading to an enhanced usability and an improved querying of the database. The query translation algorithm automatically translates SOQL queries into equivalent SQL queries for the original relational schema

    New Approaches to Multidisciplinary Design and Optimization

    Get PDF
    Research under the subject grant is being carried out in a jointly coordinated effort within three laboratories in the School of Aerospace Engineering and the George Woodruff School of Mechanical Engineering. The objectives and results for Year 2 of the research program are summarized. The "Objectives" and "Expected Significance" are taken directly from the Year 2 Proposal presented in October 1994, and "Results" summarize the what has been accomplished this year. A discussion of these results is provided in the following sections. A listing of papers, presentations and reports that acknowledge grant support, either in part or in whole, and that were prepared during this period is provided in an attachment

    Computer Aided Aroma Design. I. Molecular knowledge framework

    Get PDF
    Computer Aided Aroma Design (CAAD) is likely to become a hot issue as the REACH EC document targets many aroma compounds to require substitution. The two crucial steps in CAMD are the generation of candidate molecules and the estimation of properties, which can be difficult when complex molecular structures like odours are sought and when their odour quality are definitely subjective whereas their odour intensity are partly subjective as stated in Rossitier’s review (1996). In part I, provided that classification rules like those presented in part II exist to assess the odour quality, the CAAD methodology presented proceeds with a multilevel approach matched by a versatile and novel molecular framework. It can distinguish the infinitesimal chemical structure differences, like in isomers, that are responsible for different odour quality and intensity. Besides, its chemical graph concepts are well suited for genetic algorithm sampling techniques used for an efficient screening of large molecules such as aroma. Finally, an input/output XML format based on the aggregation of CML and ThermoML enables to store the molecular classes but also any subjective or objective property values computed during the CAAD process
    corecore