892 research outputs found

    A survey of scheduling problems with setup times or costs

    Get PDF
    Author name used in this publication: C. T. NgAuthor name used in this publication: T. C. E. Cheng2007-2008 > Academic research: refereed > Publication in refereed journalAccepted ManuscriptPublishe

    ADAPTIVE, MULTI-OBJECTIVE JOB SHOP SCHEDULING USING GENETIC ALGORITHMS

    Get PDF
    This research proposes a method to solve the adaptive, multi-objective job shop scheduling problem. Adaptive scheduling is necessary to deal with internal and external disruptions faced in real life manufacturing environments. Minimizing the mean tardiness for jobs to effectively meet customer due date requirements and minimizing mean flow time to reduce the lead time jobs spend in the system are optimized simultaneously. An asexual reproduction genetic algorithm with multiple mutation strategies is developed to solve the multi-objective optimization problem. The model is tested for single day and multi-day adaptive scheduling. Results are compared with those available in the literature for standard problems and using priority dispatching rules. The findings indicate that the genetic algorithm model can find good solutions within short computational time

    Makespan minimizing on multiple travel salesman problem with a learning effect of visiting time

    Get PDF
    -The multiple traveling salesman problem (MTSP) involves the assignment and sequencing procedure simultaneously. The assignment of a set of nodes to each visitors and determining the sequence of visiting of nodes for each visitor. Since specific range of process is needed to be carried out in nodes in commercial environment, several factors associated with routing problem are required to be taken into account. This research considers visitors’ skill and category of customers which can affect visiting time of visitors in nodes. With regard to learning-by-doing, visiting time in nodes can be reduced. And different class of customers which are determined based on their potential purchasing of power specifies that required time for nodes can be vary. So, a novel optimization model is presented to formulate MTSP, which attempts to ascertain the optimum routes for salesmen by minimizing the makespan to ensure the balance of workload of visitors. Since this problem is an NP-hard problem, for overcoming the restriction of exact methods for solving practical large-scale instances within acceptable computational times. So, Artificial Immune System (AIS) and the Firefly (FA) metaheuristic algorithm are implemented in this paper and algorithms parameters are calibrated by applying Taguchi technique. The solution methodology is assessed by an array of numerical examples and the overall performances of these metaheuristic methods are evaluated by analyzing their results with the optimum solutions to suggested problems. The results of statistical analysis by considering 95% confidence interval for calculating average relative percentage of deviation (ARPD) reveal that the solutions of proposed AIS algorithm has less variation and Its’ confidence interval of closer than to zero with no overlapping with that of FA. Although both proposed meta-heuristics are effective and efficient in solving small-scale problems, in medium and large scales problems, AIS had a better performance in a shorter average time. Finally, the applicability of the suggested pattern is implemented in a case study in a specific company, namely Kalleh

    Solving job shop scheduling problem using genetic algorithm with penalty function

    Get PDF
    This paper presents a genetic algorithm with a penalty function for the job shop scheduling problem. In the context of proposed algorithm, a clonal selection based hyper mutation and a life span extended strategy is designed. During the search process, an adaptive penalty function is designed so that the algorithm can search in both feasible and infeasible regions of the solution space. Simulated experiments were conducted on 23 benchmark instances taken from the OR-library. The results show the effectiveness of the proposed algorithm

    An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan

    Full text link
    This paper deals with a variant of flowshop scheduling, namely, the hybrid or flexible flowshop with sequence dependent setup times. This type of flowshop is frequently used in the batch production industry and helps reduce the gap between research and operational use. This scheduling problem is NP-hard and solutions for large problems are based on non-exact methods. An improved genetic algorithm (GA) based on software agent design to minimise the makespan is presented. The paper proposes using an inherent characteristic of software agents to create a new perspective in GA design. To verify the developed metaheuristic, computational experiments are conducted on a well-known benchmark problem dataset. The experimental results show that the proposed metaheuristic outperforms some of the well-known methods and the state-of-art algorithms on the same benchmark problem dataset.The translation of this paper was funded by Universidad Politecnica de Valencia, Spain.Gómez Gasquet, P.; Andrés Romano, C.; Lario Esteban, FC. (2012). An agent-based genetic algorithm for hybrid flowshops with sequence dependent setup times to minimise makespan. Expert Systems with Applications. 39(9):8095-8107. https://doi.org/10.1016/j.eswa.2012.01.158S8095810739

    Multi-Objective Flexible Job Shop Scheduling Using Genetic Algorithms

    Get PDF
    Flexible Job Shop Scheduling is an important problem in the fields of combinatorial optimization and production management. This research addresses multi-objective flexible job shop scheduling problem with the objective of simultaneous minimization of: (1) makespan, (2) workload of the most loaded machine, and (3) total workload. A general-purpose, domain independent genetic algorithm implemented in a spreadsheet environment is proposed for the flexible job shop. Spreadsheet functions are used to develop the shop model. Performance of the proposed algorithm is compared with heuristic algorithms already reported in the literature. Simulation experiments demonstrated that the proposed methodology can achieve solutions that are comparable to previous approaches in terms of solution quality and computational time. Flexible job shop models presented herein are easily customizable to cater for different objective functions without changing the basic genetic algorithm routine or the spreadsheet model. Experimental analysis demonstrates the robustness, simplicity, and general-purpose nature of the proposed approach

    Integrating sustainability into production scheduling in hybrid flow-shop environments

    Get PDF
    Global energy consumption is projected to grow by nearly 50% as of 2018, reaching a peak of 910.7 quadrillion BTU in 2050. The industrial sector accounts for the largest share of the energy consumed, making energy awareness on the shop foors imperative for promoting industrial sustainable development. Considering a growing awareness of the importance of sustainability, production planning and control require the incorporation of time-of-use electricity pricing models into scheduling problems for well-informed energy-saving decisions. Besides, modern manufacturing emphasizes the role of human factors in production processes. This study proposes a new approach for optimizing the hybrid fow-shop scheduling problems (HFSP) considering time-of-use electricity pricing, workers’ fexibility, and sequence-dependent setup time (SDST). Novelties of this study are twofold: to extend a new mathematical formulation and to develop an improved multi-objective optimization algorithm. Extensive numerical experiments are conducted to evaluate the performance of the developed solution method, the adjusted multi-objective genetic algorithm (AMOGA), comparing it with the state-of-the-art, i.e., strength Pareto evolutionary algorithm (SPEA2), and Pareto envelop-based selection algorithm (PESA2). It is shown that AMOGA performs better than the benchmarks considering the mean ideal distance, inverted generational distance, diversifcation, and quality metrics, providing more versatile and better solutions for production and energy efciency

    An Effective Hybrid Genetic Algorithm for Hybrid Flow Shops with Sequence Dependent Setup Times and Processor Blocking

    Get PDF
    Hybrid flow-shop or flexible flow shop problems have remained subject of intensive research over several years. Hybrid flow-shop problems overcome one of the limitations of the classical flow-shop model by allowing parallel processors at each stage of task processing. In many papers the assumptions are generally made that there is unlimited storage available between stages and the setup times are neglected or considered independent from sequences of jobs. In this paper we study the hybrid flow shop problems with sequence dependent setup times and processor blocking. We present an effective hybrid genetic algorithm with some state-of-the-art procedures for these NP-hard problems to minimize total completion time or makespan. We established a benchmark to draw an analogy between the performance of our algorithm and RKGA. The obtaining results clearly show the superiority performance of our algorithm
    corecore