23,514 research outputs found

    Representing and Understanding Non-Manifold Objects

    Get PDF
    Solid Modeling is a well-established field. The significance of the contributions of this field is visible in the availability of abundant commercial and free modeling tools for the applications of CAD, animation, visualization etc. There are various approaches to modeling shapes. A common problem to all of them however, is the handling of non-manifold shapes. Manifold shapes are shapes with the property of topological ``smoothness'' at the local neighbourhood of every point. Objects that contain one or more points that lack this smoothness are all considered non-manifold. Non-manifold objects form a huge catagory of shapes. In the field of solid modeling, solutions typically limit the application domain to manifold shapes. Where the occurrence of non-manifold shapes is inevitable, they are often processed at a high cost. The lack of understanding on the nature of non-manifold shapes is the main cause of it. There is a tremendous gap between the well-established mathematical theories in topology and the materialization of such knowledge in the discrete combinatorial domain of computer science and engineering. The motivation of this research is to bridge this gap between the two. We present a characterization of non-manifoldness in 3D simplicial shapes. Based on this characterization, we propose data structures to address the applicational needs for the representation of 3D simplicial complexes with mixed dimensions and non-manifold connectivities, which is an area that is greatly lacking in the literature. The availability of a suitable data structure makes the structural analysis of non-manifold shapes feasible. We address the problem of non-manifold shape understanding through a structural analysis that is based on decomposition

    Faster ASV decomposition for orthogonal polyhedra using the Extreme Vertices Model (EVM)

    Get PDF
    The alternating sum of volumes (ASV) decomposition is a widely used technique for converting a B-Rep into a CSG model. The obtained CSG tree has convex primitives at its leaf nodes, while the contents of its internal nodes alternate between the set union and difference operators. This work first shows that the obtained CSG tree T can also be expressed as the regularized Exclusive-OR operation among all the convex primitives at the leaf nodes of T, regardless the structure and internal nodes of T. This is an important result in the case in which EVM represented orthogonal polyhedra are used because in this model the Exclusive-OR operation runs much faster than set union and difference operations. Therefore this work applies this result to EVM represented orthogonal polyhedra. It also presents experimental results that corroborate the theoretical results and includes some practical uses for the ASV decomposition of orthogonal polyhedra.Postprint (published version

    On the optimality of shape and data representation in the spectral domain

    Full text link
    A proof of the optimality of the eigenfunctions of the Laplace-Beltrami operator (LBO) in representing smooth functions on surfaces is provided and adapted to the field of applied shape and data analysis. It is based on the Courant-Fischer min-max principle adapted to our case. % The theorem we present supports the new trend in geometry processing of treating geometric structures by using their projection onto the leading eigenfunctions of the decomposition of the LBO. Utilisation of this result can be used for constructing numerically efficient algorithms to process shapes in their spectrum. We review a couple of applications as possible practical usage cases of the proposed optimality criteria. % We refer to a scale invariant metric, which is also invariant to bending of the manifold. This novel pseudo-metric allows constructing an LBO by which a scale invariant eigenspace on the surface is defined. We demonstrate the efficiency of an intermediate metric, defined as an interpolation between the scale invariant and the regular one, in representing geometric structures while capturing both coarse and fine details. Next, we review a numerical acceleration technique for classical scaling, a member of a family of flattening methods known as multidimensional scaling (MDS). There, the optimality is exploited to efficiently approximate all geodesic distances between pairs of points on a given surface, and thereby match and compare between almost isometric surfaces. Finally, we revisit the classical principal component analysis (PCA) definition by coupling its variational form with a Dirichlet energy on the data manifold. By pairing the PCA with the LBO we can handle cases that go beyond the scope defined by the observation set that is handled by regular PCA

    Virtual Delamination Testing through Non-Linear Multi-Scale Computational Methods: Some Recent Progress

    Full text link
    This paper deals with the parallel simulation of delamination problems at the meso-scale by means of multi-scale methods, the aim being the Virtual Delamination Testing of Composite parts. In the non-linear context, Domain Decomposition Methods are mainly used as a solver for the tangent problem to be solved at each iteration of a Newton-Raphson algorithm. In case of strongly nonlinear and heterogeneous problems, this procedure may lead to severe difficulties. The paper focuses on methods to circumvent these problems, which can now be expressed using a relatively general framework, even though the different ingredients of the strategy have emerged separately. We rely here on the micro-macro framework proposed in (Ladev\`eze, Loiseau, and Dureisseix, 2001). The method proposed in this paper introduces three additional features: (i) the adaptation of the macro-basis to situations where classical homogenization does not provide a good preconditioner, (ii) the use of non-linear relocalization to decrease the number of global problems to be solved in the case of unevenly distributed non-linearities, (iii) the adaptation of the approximation of the local Schur complement which governs the convergence of the proposed iterative technique. Computations of delamination and delamination-buckling interaction with contact on potentially large delaminated areas are used to illustrate those aspects

    A Statistical Toolbox For Mining And Modeling Spatial Data

    Get PDF
    Most data mining projects in spatial economics start with an evaluation of a set of attribute variables on a sample of spatial entities, looking for the existence and strength of spatial autocorrelation, based on the Moran’s and the Geary’s coefficients, the adequacy of which is rarely challenged, despite the fact that when reporting on their properties, many users seem likely to make mistakes and to foster confusion. My paper begins by a critical appraisal of the classical definition and rational of these indices. I argue that while intuitively founded, they are plagued by an inconsistency in their conception. Then, I propose a principled small change leading to corrected spatial autocorrelation coefficients, which strongly simplifies their relationship, and opens the way to an augmented toolbox of statistical methods of dimension reduction and data visualization, also useful for modeling purposes. A second section presents a formal framework, adapted from recent work in statistical learning, which gives theoretical support to our definition of corrected spatial autocorrelation coefficients. More specifically, the multivariate data mining methods presented here, are easily implementable on the existing (free) software, yield methods useful to exploit the proposed corrections in spatial data analysis practice, and, from a mathematical point of view, whose asymptotic behavior, already studied in a series of papers by Belkin & Niyogi, suggests that they own qualities of robustness and a limited sensitivity to the Modifiable Areal Unit Problem (MAUP), valuable in exploratory spatial data analysis

    Principal Nested Spheres for Time Warped Functional Data Analysis

    Full text link
    There are often two important types of variation in functional data: the horizontal (or phase) variation and the vertical (or amplitude) variation. These two types of variation have been appropriately separated and modeled through a domain warping method (or curve registration) based on the Fisher Rao metric. This paper focuses on the analysis of the horizontal variation, captured by the domain warping functions. The square-root velocity function representation transforms the manifold of the warping functions to a Hilbert sphere. Motivated by recent results on manifold analogs of principal component analysis, we propose to analyze the horizontal variation via a Principal Nested Spheres approach. Compared with earlier approaches, such as approximating tangent plane principal component analysis, this is seen to be the most efficient and interpretable approach to decompose the horizontal variation in some examples
    corecore