3,402 research outputs found

    MOEA/D with Adaptive Weight Adjustment

    Get PDF
    Recently, MOEA/D (multi-objective evolutionary algorithm based on decomposition) has achieved great success in the field of evolutionary multi-objective optimization and has attracted a lot of attention. It decomposes a multi-objective optimization problem (MOP) into a set of scalar subproblems using uniformly distributed aggregation weight vectors and provides an excellent general algorithmic framework of evolutionary multi-objective optimization. Generally, the uniformity of weight vectors in MOEA/D can ensure the diversity of the Pareto optimal solutions, however, it cannot work as well when the target MOP has a complex Pareto front (PF; i.e., discontinuous PF or PF with sharp peak or low tail). To remedy this, we propose an improved MOEA/D with adaptive weight vector adjustment (MOEA/D-AWA). According to the analysis of the geometric relationship between the weight vectors and the optimal solutions under the Chebyshev decomposition scheme, a new weight vector initialization method and an adaptive weight vector adjustment strategy are introduced in MOEA/D-AWA. The weights are adjusted periodically so that the weights of subproblems can be redistributed adaptively to obtain better uniformity of solutions. Meanwhile, computing efforts devoted to subproblems with duplicate optimal solution can be saved. Moreover, an external elite population is introduced to help adding new subproblems into real sparse regions rather than pseudo sparse regions of the complex PF, that is, discontinuous regions of the PF. MOEA/D-AWA has been compared with four state of the art MOEAs, namely the original MOEA/D, Adaptive-MOEA/D, [Formula: see text]-MOEA/D, and NSGA-II on 10 widely used test problems, two newly constructed complex problems, and two many-objective problems. Experimental results indicate that MOEA/D-AWA outperforms the benchmark algorithms in terms of the IGD metric, particularly when the PF of the MOP is complex.</jats:p

    An adaptation reference-point-based multiobjective evolutionary algorithm

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.It is well known that maintaining a good balance between convergence and diversity is crucial to the performance of multiobjective optimization algorithms (MOEAs). However, the Pareto front (PF) of multiobjective optimization problems (MOPs) affects the performance of MOEAs, especially reference point-based ones. This paper proposes a reference-point-based adaptive method to study the PF of MOPs according to the candidate solutions of the population. In addition, the proportion and angle function presented selects elites during environmental selection. Compared with five state-of-the-art MOEAs, the proposed algorithm shows highly competitive effectiveness on MOPs with six complex characteristics

    UAV 3-D path planning based on MOEA/D with adaptive areal weight adjustment

    Full text link
    Unmanned aerial vehicles (UAVs) are desirable platforms for time-efficient and cost-effective task execution. 3-D path planning is a key challenge for task decision-making. This paper proposes an improved multi-objective evolutionary algorithm based on decomposition (MOEA/D) with an adaptive areal weight adjustment (AAWA) strategy to make a tradeoff between the total flight path length and the terrain threat. AAWA is designed to improve the diversity of the solutions. More specifically, AAWA first removes a crowded individual and its weight vector from the current population and then adds a sparse individual from the external elite population to the current population. To enable the newly-added individual to evolve towards the sparser area of the population in the objective space, its weight vector is constructed by the objective function value of its neighbors. The effectiveness of MOEA/D-AAWA is validated in twenty synthetic scenarios with different number of obstacles and four realistic scenarios in comparison with other three classical methods.Comment: 23 pages,11 figure

    A decomposition-based multiobjective evolutionary algorithm with angle-based adaptive penalty

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.A multiobjective evolutionary algorithm based on decomposition (MOEA/D) decomposes a multiobjective optimization problem (MOP) into a number of scalar optimization subproblems and optimizes them in a collaborative manner. In MOEA/D, decomposition mechanisms are used to push the population to approach the Pareto optimal front (POF), while a set of uniformly distributed weight vectors are applied to maintain the diversity of the population. Penalty-based boundary intersection (PBI) is one of the approaches used frequently in decomposition. In PBI, the penalty factor plays a crucial role in balancing convergence and diversity. However, the traditional PBI approach adopts a fixed penalty value, which will significantly degrade the performance of MOEA/D on some MOPs with complicated POFs. This paper proposes an angle-based adaptive penalty (AAP) scheme for MOEA/D, called MOEA/D-AAP, which can dynamically adjust the penalty value for each weight vector during the evolutionary process. Six newly designed benchmark MOPs and an MOP in the wastewater treatment process are used to test the effectiveness of the proposed MOEA/D-AAP. Comparison experiments demonstrate that the AAP scheme can significantly improve the performance of MOEA/D

    Differential evolution with an evolution path: a DEEP evolutionary algorithm

    Get PDF
    Utilizing cumulative correlation information already existing in an evolutionary process, this paper proposes a predictive approach to the reproduction mechanism of new individuals for differential evolution (DE) algorithms. DE uses a distributed model (DM) to generate new individuals, which is relatively explorative, whilst evolution strategy (ES) uses a centralized model (CM) to generate offspring, which through adaptation retains a convergence momentum. This paper adopts a key feature in the CM of a covariance matrix adaptation ES, the cumulatively learned evolution path (EP), to formulate a new evolutionary algorithm (EA) framework, termed DEEP, standing for DE with an EP. Without mechanistically combining two CM and DM based algorithms together, the DEEP framework offers advantages of both a DM and a CM and hence substantially enhances performance. Under this architecture, a self-adaptation mechanism can be built inherently in a DEEP algorithm, easing the task of predetermining algorithm control parameters. Two DEEP variants are developed and illustrated in the paper. Experiments on the CEC'13 test suites and two practical problems demonstrate that the DEEP algorithms offer promising results, compared with the original DEs and other relevant state-of-the-art EAs

    Scalarizing Functions in Decomposition-Based Multiobjective Evolutionary Algorithms

    Get PDF
    Decomposition-based multiobjective evolutionary algorithms (MOEAs) have received increasing research interests due to their high performance for solving multiobjective optimization problems. However, scalarizing functions (SFs), which play a crucial role in balancing diversity and convergence in these kinds of algorithms, have not been fully investigated. This paper is mainly devoted to presenting two new SFs and analyzing their effect in decomposition-based MOEAs. Additionally, we come up with an efficient framework for decomposition-based MOEAs based on the proposed SFs and some new strategies. Extensive experimental studies have demonstrated the effectiveness of the proposed SFs and algorithm

    Comparando Algoritmos Evolutivos Baseados em Decomposição para Problemas de Otimização Multiobjetivo e com Muitos Objetivos

    Get PDF
    Many real-world problems can be mathematically modeled as Multiobjective Optimization Problems (MOPs), as they involve multiple conflicting objective functions that must be minimized simultaneously. MOPs with more than 3 objective functions are called Many-objective Optimization Problems (MaOPs). MOPs are typically solved through Multiobjective Evolutionary Algorithms (MOEAs), which can obtain a set of non-dominated optimal solutions, known as a Pareto front, in a single run. The MOEA Based on Decomposition (MOEA/D) is one of the most efficient, dividing a MOP into several single-objective subproblems and optimizing them simultaneously. This study evaluated the performance of MOEA/D and four variants representing the state of the art in the literature (MOEA/DD, MOEA/D-DE, MOEA/D-DU, and MOEA/D-AWA) in MOPs and MaOPs. Computational experiments were conducted using benchmark MOPs and MaOPs from the DTLZ suite considering 3 and 5 objective functions. Additionally, a statistical analysis, including the Wilcoxon test, was performed to evaluate the results obtained in the IGD+ performance indicator. The Hypervolume performance indicator was also considered in the combined Pareto front, formed by all solutions obtained by each MOEA. The experiments revealed that MOEA/DD performed best in IGD+, and MOEA/D-AWA achieved the highest Hypervolume in the combined Pareto front, while MOEA/D-DE registered the worst result in this set of problems.Muitos problemas oriundos do mundo real podem ser modelados matematicamente como Problemas de Otimização Multiobjetivo (POMs), já que possuem diversas funções objetivo conflitantes entre si que devem ser minimizadas simultaneamente. POMs com mais de 3 funções objetivo recebem o nome de Problemas de Otimização com Muitos Objetivos (MaOPs, do inglês Many-objective Optimization Problems). Os POMs geralmente são resolvidos através de Algoritmos Evolutivos Multiobjetivos (MOEAs, do inglês Multiobjective Evolutionary Algorithms), os quais conseguem obter um conjunto de soluções ótimas não dominadas entre si, conhecidos como frente de Pareto, em uma única execução. O MOEA baseado em decomposição (MOEA/D) é um dos mais eficientes, o qual divide um POM em vários subproblemas monobjetivos otimizando-os ao mesmo tempo. Neste estudo foi realizada uma avaliação dos desempenhos do MOEA/D e quatro de suas variantes que representam o estado da arte da literatura (MOEA/DD, MOEA/D-DE, MOEA/D-DU e MOEA/D-AWA) em POMs e MaOPs. Foram conduzidos experimentos computacionais utilizando POMs e MaOPs benchmark do suite DTLZ considerando 3 e 5 funções objetivo. Além disso, foi realizada uma análise estatística que incluiu o teste de Wilcoxon para avaliar os resultados obtidos no indicador de desempenho IGD+. Também foi considerado o indicador de desempenho Hypervolume na frente de Pareto combinada, que é formada por todas as soluções obtidas por cada MOEA. Os experimentos revelaram que o MOEA/DD apresentou a melhor performance no IGD+ e o MOEA/D-AWA obteve o maior Hypervolume na frente de Pareto combinada, enquanto o MOEA/D-DE registrou o pior resultado nesse conjunto de problemas
    corecore