74 research outputs found

    Randomized Symmetric Crypto Spatial Fusion Steganographic System

    Get PDF
    The image fusion steganographic system embeds encrypted messages in decomposed multimedia carriers using a pseudorandom generator but it fails to evaluate the contents of the cover image. This results in the secret data being embedded in smooth regions, which leads to visible distortion that affects the imperceptibility and confidentiality. To solve this issue, as well as to improve the quality and robustness of the system, the Randomized Symmetric Crypto Spatial Fusion Steganography System is proposed in this study. It comprises three-subsystem bitwise encryption, spatial fusion, and bitwise embedding. First, bitwise encryption encrypts the message using bitwise operation to improve the confidentiality. Then, spatial fusion decomposes and evaluates the region of embedding on the basis of sharp intensity and capacity. This restricts the visibility of distortion and provides a high embedding capacity. Finally, the bitwise embedding system embeds the encrypted message through differencing the pixels in the region by 1, checking even or odd options and not equal to zero constraints. This reduces the modification rate to avoid distortion. The proposed heuristic algorithm is implemented in the blue channel, to which the human visual system is less sensitive. It was tested using standard IST natural images with steganalysis algorithms and resulted in better quality, imperceptibility, embedding capacity and invulnerability to various attacks compared to other steganographic systems

    JPEG Steganography and Synchronization of DCT Coefficients for a Given Development Pipeline

    Full text link
    This short paper proposes to use the statistical analysis of the correlation between DCT coefficients to design a new synchronization strategy that can be used for cost-based steganographic schemes in the JPEG domain. First, an analysis is performed on the covariance matrix of DCT coefficients of neighboring blocks after a development similar to the one used to generate BossBase. This analysis exhibits groups of uncorrelated coefficients: 4 groups per block and 2 groups of uncorrelated diagonal neighbors together with groups of mutually correlated coefficients groups of 6 coefficients per blocs and 8 coefficients between 2 adjacent blocks. Using the uncorrelated groups, an embedding scheme can be designed using only 8 disjoint lattices. The cost map for each lattice is updated firstly by using an implicit underlying Gaussian distribution with a variance directly computed from the embedding costs, and secondly by deriving conditional distributions from multivariate distributions. The covariance matrix of these distributions takes into account both the correlations exhibited by the analysis of the covariance matrix and the variance derived from the cost. This synchronization scheme enables to obtain a gain of PE of 5% at QF 95 for an embedding rate close to 0.3 bnzac coefficient using DCTR feature sets

    Adaptive spatial image steganography and steganalysis using perceptual modelling and machine learning

    Get PDF
    Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research.Image steganography is a method for communicating secret messages under the cover images. A sender will embed the secret messages into the cover images according to an algorithm, and then the resulting image will be sent to the receiver. The receiver can extract the secret messages with the predefined algorithm. To counter this kind of technique, image steganalysis is proposed to detect the presence of secret messages. After many years of development, current image steganography uses the adaptive algorithm for embedding the secrets, which automatically finds the complex area in the cover source to avoid being noticed. Meanwhile, image steganalysis has also been advanced to universal steganalysis, which does not require the knowledge of the steganographic algorithm. With the development of the computational hardware, i.e., Graphical Processing Units (GPUs), some computational expensive techniques are now available, i.e., Convolutional Neural Networks (CNNs), which bring a large improvement in the detection tasks in image steganalysis. To defend against the attacks, new techniques are also being developed to improve the security of image steganography, these include designing more scientific cost functions, the key in adaptive steganography, and generating stego images from the knowledge of the CNNs. Several contributions are made for both image steganography and steganalysis in this thesis. Firstly, inspired by the Ranking Priority Profile (RPP), a new cost function for adaptive image steganography is proposed, which uses the two-dimensional Singular Spectrum Analysis (2D-SSA) and Weighted Median Filter (WMF) in the design. The RPP mainly includes three rules, i.e., the Complexity-First rule, the Clustering rule and the Spreading rule, to design a cost function. The 2D-SSA is employed in selecting the key components and clustering the embedding positions, which follows the Complexity-First rule and the Clustering rule. Also, the Spreading rule is followed to smooth the resulting image produced by 2D-SSA with WMF. The proposed algorithm has improved performance over four benchmarking approaches against non-shared selection channel attacks. It also provides comparable performance in selection-channel-aware scenarios, where the best results are observed when the relative payload is 0.3 bpp or larger. The approach is much faster than other model-based methods. Secondly, for image steganalysis, to tackle more complex datasets that are close to the real scenarios and to push image steganalysis further to real-life applications, an Enhanced Residual Network with self-attention ability, i.e., ERANet, is proposed. By employing a more mathematically sophisticated way to extract more effective features in the images and the global self-Attention technique, the ERANet can further capture the stego signal in the deeper layers, hence it is suitable for the more complex situations in the new datasets. The proposed Enhanced Low-Level Feature Representation Module can be easily mounted on other CNNs in selecting the most representative features. Although it comes with a slightly extra computational cost, comprehensive experiments on the BOSSbase and ALASKA#2 datasets have demonstrated the effectiveness of the proposed methodology. Lastly, for image steganography, with the knowledge from the CNNs, a novel postcost-optimization algorithm is proposed. Without modifying the original stego image and the original cost function of the steganography, and no need for training a Generative Adversarial Network (GAN), the proposed method mainly uses the gradient maps from a well-trained CNN to represent the cost, where the original cost map of the steganography is adopted to indicate the embedding positions. This method will smooth the gradient maps before adjusting the cost, which solves the boundary problem of the CNNs having multiple subnets. Extensive experiments have been carried out to validate the effectiveness of the proposed method, which provides state-of-the-art performance. In addition, compared to existing work, the proposed method is effcient in computing time as well. In short, this thesis has made three major contributions to image steganography and steganalysis by using perceptual modelling and machine learning. A novel cost function and a post-cost-optimization function have been proposed for adaptive spatial image steganography, which helps protect the secret messages. For image steganalysis, a new CNN architecture has also been proposed, which utilizes multiple techniques for providing state of-the-art performance. Future directions are also discussed for indicating potential research

    Modeling and frequency tracking of marine mammal whistle calls

    Get PDF
    Submitted in partial fulfillment of the requirements for the degree of Master of Science at the Massachusetts Institute of Technology and the Woods Hole Oceanographic Institution February 2009Marine mammal whistle calls present an attractive medium for covert underwater communications. High quality models of the whistle calls are needed in order to synthesize natural-sounding whistles with embedded information. Since the whistle calls are composed of frequency modulated harmonic tones, they are best modeled as a weighted superposition of harmonically related sinusoids. Previous research with bottlenose dolphin whistle calls has produced synthetic whistles that sound too “clean” for use in a covert communications system. Due to the sensitivity of the human auditory system, watermarking schemes that slightly modify the fundamental frequency contour have good potential for producing natural-sounding whistles embedded with retrievable watermarks. Structured total least squares is used with linear prediction analysis to track the time-varying fundamental frequency and harmonic amplitude contours throughout a whistle call. Simulation and experimental results demonstrate the capability to accurately model bottlenose dolphin whistle calls and retrieve embedded information from watermarked synthetic whistle calls. Different fundamental frequency watermarking schemes are proposed based on their ability to produce natural sounding synthetic whistles and yield suitable watermark detection and retrieval

    Lost in the Digital Wild: Hiding Information in Digital Activities

    Get PDF
    This paper presents a new general framework of information hiding, in which the hidden information is embedded into a collection of activities conducted by selected human and computer entities (e.g., a number of online accounts of one or more online social networks) in a selected digital world. Different from other traditional schemes, where the hidden information is embedded into one or more selected or generated cover objects, in the new framework the hidden information is embedded in the fact that some particular digital activities with some particular attributes took place in some particular ways in the receiver-observable digital world. In the new framework the concept of "cover" almost disappears, or one can say that now the whole digital world selected becomes the cover. The new framework can find applications in both security (e.g., steganography) and non-security domains (e.g., gaming). For security applications we expect that the new framework calls for completely new steganalysis techniques, which are likely more complicated, less effective and less efficient than existing ones due to the need to monitor and analyze the whole digital world constantly and in real time. A proof-of-concept system was developed as a mobile app based on Twitter activities to demonstrate the information hiding framework works. We are developing a more hybrid system involving several online social networks

    Exploiting similarities between secret and cover images for improved embedding efficiency and security in digital steganography

    Get PDF
    The rapid advancements in digital communication technology and huge increase in computer power have generated an exponential growth in the use of the Internet for various commercial, governmental and social interactions that involve transmission of a variety of complex data and multimedia objects. Securing the content of sensitive as well as personal transactions over open networks while ensuring the privacy of information has become essential but increasingly challenging. Therefore, information and multimedia security research area attracts more and more interest, and its scope of applications expands significantly. Communication security mechanisms have been investigated and developed to protect information privacy with Encryption and Steganography providing the two most obvious solutions. Encrypting a secret message transforms it to a noise-like data which is observable but meaningless, while Steganography conceals the very existence of secret information by hiding in mundane communication that does not attract unwelcome snooping. Digital steganography is concerned with using images, videos and audio signals as cover objects for hiding secret bit-streams. Suitability of media files for such purposes is due to the high degree of redundancy as well as being the most widely exchanged digital data. Over the last two decades, there has been a plethora of research that aim to develop new hiding schemes to overcome the variety of challenges relating to imperceptibility of the hidden secrets, payload capacity, efficiency of embedding and robustness against steganalysis attacks. Most existing techniques treat secrets as random bit-streams even when dealing with non-random signals such as images that may add to the toughness of the challenges.This thesis is devoted to investigate and develop steganography schemes for embedding secret images in image files. While many existing schemes have been developed to perform well with respect to one or more of the above objectives, we aim to achieve optimal performance in terms of all these objectives. We shall only be concerned with embedding secret images in the spatial domain of cover images. The main difficulty in addressing the different challenges stems from the fact that the act of embedding results in changing cover image pixel values that cannot be avoided, although these changes may not be easy to detect by the human eye. These pixel changes is a consequence of dissimilarity between the cover LSB plane and the secretimage bit-stream, and result in changes to the statistical parameters of stego-image bit-planes as well as to local image features. Steganalysis tools exploit these effects to model targeted as well as blind attacks. These challenges are usually dealt with by randomising the changes to the LSB, using different/multiple bit-planes to embed one or more secret bits using elaborate schemes, or embedding in certain regions that are noise-tolerant. Our innovative approach to deal with these challenges is first to develop some image procedures and models that result in increasing similarity between the cover image LSB plane and the secret image bit-stream. This will be achieved in two novel steps involving manipulation of both the secret image and the cover image, prior to embedding, that result a higher 0:1 ratio in both the secret bit-stream and the cover pixels‘ LSB plane. For the secret images, we exploit the fact that image pixel values are in general neither uniformly distributed, as is the case of random secrets, nor spatially stationary. We shall develop three secret image pre-processing algorithms to transform the secret image bit-stream for increased 0:1 ratio. Two of these are similar, but one in the spatial domain and the other in the Wavelet domain. In both cases, the most frequent pixels are mapped onto bytes with more 0s. The third method, process blocks by subtracting their means from their pixel values and hence reducing the require number of bits to represent these blocks. In other words, this third algorithm also reduces the length of the secret image bit-stream without loss of information. We shall demonstrate that these algorithms yield a significant increase in the secret image bit-stream 0:1 ratio, the one that based on the Wavelet domain is the best-performing with 80% ratio.For the cover images, we exploit the fact that pixel value decomposition schemes, based on Fibonacci or other defining sequences that differ from the usual binary scheme, expand the number of bit-planes and thereby may help increase the 0:1 ratio in cover image LSB plane. We investigate some such existing techniques and demonstrate that these schemes indeed lead to increased 0:1 ratio in the corresponding cover image LSB plane. We also develop a new extension of the binary decomposition scheme that is the best-performing one with 77% ratio. We exploit the above two steps strategy to propose a bit-plane(s) mapping embedding technique, instead of bit-plane(s) replacement to make each cover pixel usable for secret embedding. This is motivated by the observation that non-binary pixel decomposition schemes also result in decreasing the number of possible patterns for the three first bit-planes to 4 or 5 instead of 8. We shall demonstrate that the combination of the mapping-based embedding scheme and the two steps strategy produces stego-images that have minimal distortion, i.e. reducing the number of the cover pixels changes after message embedding and increasing embedding efficiency. We shall also demonstrate that these schemes result in reasonable stego-image quality and are robust against all the targeted steganalysis tools but not against the blind SRM tool. We shall finally identify possible future work to achieve robustness against SRM at some payload rates and further improve stego-image quality

    A Study in Image Watermarking Schemes using Neural Networks

    Full text link
    The digital watermarking technique, an effective way to protect image, has become the research focus on neural network. The purpose of this paper is to provide a brief study on broad theories and discuss the different types of neural networks for image watermarking. Most of the research interest image watermarking based on neural network in discrete wavelet transform or discrete cosine transform. Generally image watermarking based on neural network to solve the problem on to reduce the error, improve the rate of the learning, achieves goods imperceptibility and robustness. It will be useful for researches to implement effective image watermarking by using neural network
    • 

    corecore