27,638 research outputs found

    On Hamilton decompositions of infinite circulant graphs

    Get PDF
    The natural infinite analogue of a (finite) Hamilton cycle is a two-way-infinite Hamilton path (connected spanning 2-valent subgraph). Although it is known that every connected 2k-valent infinite circulant graph has a two-way-infinite Hamilton path, there exist many such graphs that do not have a decomposition into k edge-disjoint two-way-infinite Hamilton paths. This contrasts with the finite case where it is conjectured that every 2k-valent connected circulant graph has a decomposition into k edge-disjoint Hamilton cycles. We settle the problem of decomposing 2k-valent infinite circulant graphs into k edge-disjoint two-way-infinite Hamilton paths for k=2, in many cases when k=3, and in many other cases including where the connection set is ±{1,2,...,k} or ±{1,2,...,k - 1, 1,2,...,k + 1}

    A Complete Grammar for Decomposing a Family of Graphs into 3-connected Components

    Full text link
    Tutte has described in the book "Connectivity in graphs" a canonical decomposition of any graph into 3-connected components. In this article we translate (using the language of symbolic combinatorics) Tutte's decomposition into a general grammar expressing any family of graphs (with some stability conditions) in terms of the 3-connected subfamily. A key ingredient we use is an extension of the so-called dissymmetry theorem, which yields negative signs in the grammar. As a main application we recover in a purely combinatorial way the analytic expression found by Gim\'enez and Noy for the series counting labelled planar graphs (such an expression is crucial to do asymptotic enumeration and to obtain limit laws of various parameters on random planar graphs). Besides the grammar, an important ingredient of our method is a recent bijective construction of planar maps by Bouttier, Di Francesco and Guitter.Comment: 39 page
    • …
    corecore