1,802 research outputs found

    Performance comparison of optimal fractional order hybrid fuzzy PID controllers for handling oscillatory fractional order processes with dead time

    Get PDF
    This is the author accepted manuscript. The final version is available from Elsevier via the DOI in this record.Fuzzy logic based PID controllers have been studied in this paper, considering several combinations of hybrid controllers by grouping the proportional, integral and derivative actions with fuzzy inferencing in different forms. Fractional order (FO) rate of error signal and FO integral of control signal have been used in the design of a family of decomposed hybrid FO fuzzy PID controllers. The input and output scaling factors (SF) along with the integro-differential operators are tuned with real coded genetic algorithm (GA) to produce optimum closed loop performance by simultaneous consideration of the control loop error index and the control signal. Three different classes of fractional order oscillatory processes with various levels of relative dominance between time constant and time delay have been used to test the comparative merits of the proposed family of hybrid fractional order fuzzy PID controllers. Performance comparison of the different FO fuzzy PID controller structures has been done in terms of optimal set-point tracking, load disturbance rejection and minimal variation of manipulated variable or smaller actuator requirement etc. In addition, multi-objective Non-dominated Sorting Genetic Algorithm (NSGA-II) has been used to study the Pareto optimal trade-offs between the set point tracking and control signal, and the set point tracking and load disturbance performance for each of the controller structure to handle the three different types of processes

    Wavelet-fuzzy speed indirect field oriented controller for three-phase AC motor drive – Investigation and implementation

    Get PDF
    Three-phase voltage source inverter driven induction motor is used in many medium- and high-power applications. Precision in speed of the motor play vital role, i.e. popular methods of direct/indirect field-oriented control (FOC) are applied. FOC is employed with proportional–integral (P-I) or proportional–integral–derivative (P-I-D) controllers and they are not adaptive, since gains are fixed at all operating conditions. Therefore, it needs a robust speed controlling in precision for induction motor drive application. This research paper articulates a novel speed control for FOC induction motor drive based on wavelet-fuzzy logic interface system. In specific, the P-I-D controller of IFOC which is actually replaced by the wavelet-fuzzy controller. The speed feedback (error) signal is composed of multiple low and high frequency components. Further, these components are decomposed by the discrete wavelet transform and the fuzzy logic controller to generate the scaled gains for the indirect FOC induction motor. Complete model of the proposed ac motor drive is developed with numerical simulation Matlab/Simulink software and tested under different working conditions. For experimental verification, a hardware prototype was implemented and the control algorithm is framed using TMS320F2812 digital signal processor (dsp). Both simulation and hardware results presented in this paper are shown in close agreement and conformity about the suitability for industrial applications

    Design and implementation of fuzzy logic controller for a process control application

    Get PDF
    Many industrial applications of fuzzy logic control have been reported. This thesis studies and reports the problems associated with the Heat-exchanger temperature control via conventional PID control implemented with Programmable Logic Controllers (PLC) and provides an example of design and implementation of fuzzy logic controllers (FLC\u27s) for a Heat exchanger in a Water for Injection (WFI) system. After a basic FLC was designed and tested, it is shown how its rule base evolved to achieve superior performance by utilizing additional low-cost sensing information in the process and its environment. A method for the implementation of FLC\u27s into the existing PLC is discussed. The system performance of the five designed FLC rule-base strategies is compared with that of the existing PIID controller and it is concluded that better performance can be achieved by using the fuzzy logic control technology. Finally, this thesis discusses some blocking problems in widespread industrial applications of FLCs and the possible solutions to them

    Investigating the use of the e-mail in the teaching and learning of a technical subject among Polytechnic Ungku Omar Students

    Get PDF
    Through the use of technology in education, effectiveness in the teaching and learning process can be achieved. In this project, the researcher wants to identify whether the usage of the electronic mail in the teaching and learning of a technical subject will benefit the teaching and learning process or not. Other than that, researcher wants to identify problems faced in applying the electronic mail in the teaching and learning of a technical subject among Polytechnic Ungku Omar students. Respondents of the project were one class of Polytechnic Ungku Omar students who were taking Data Communication subject. There were two research approaches used in getting the data which are qualitative approaches and quantitative approach. Qualitative data includes data collected through observations, interview and content analysis. Quantitative data includes data collected through questionnaires. Data collected reveals that participants used the e-mail in different ways which brought them various benefits. E-mail was used as a pedagogy of teaching and learning, medium of communication and tool for different purposes like academic purposes, general query and query for personal development, socializing, complaining and suggesting ideas. The use of e-mail was influenced by factors like gender, personality, experience in using e-mail and the features of the e-mail itself. However, the problem faced by the students such as slow downloading or server problems, limited number of computers for use, limited number of computer labs, many of the computers in the polytechnic were not working properly, crowded computer lab, compact personal time table, lecturer to students ratio was too high, difficult to understand the description, do not have enough money to surf at Cyber Cafe and no free or confirmed access to Internet in Polytechnic have influenced the use of the electronic mail in the teaching and learning of a technical subject among Polytechnic Ungku Omar student

    Tuning of different controlling techniques for magnetic suspending system using an improved bat algorithm

    Get PDF
    In this paper, design of proportional- derivative (PD) controller, pseudo-derivative-feedback (PDF) controller and PDF with feedforward (PDFF) controller for magnetic suspending system have been presented. Tuning of the above controllers is achieved based on Bat algorithm (BA). BA is a recent bio-inspired optimization method for solving global optimization problems, which mimic the behavior of micro-bats. The weak point of the standard BA is the exploration ability due to directional echolocation and the difficulty in escaping from local optimum. The new improved BA enhances the convergence rate while obtaining optimal solution by introducing three adaptations namely modified frequency factor, adding inertia weight and modified local search. The feasibility of the proposed algorithm is examined by applied to several benchmark problems that are adopted from literature. The results of IBA are compared with the results collected from standard BA and the well-known particle swarm optimization (PSO) algorithm. The simulation results show that the IBA has a higher accuracy and searching speed than the approaches considered. Finally, the tuning of the three controlling schemes using the proposed algorithm, standard BA and PSO algorithms reveals that IBA has a higher performance compared with the other optimization algorithm

    Review on decomposed fuzzy PID structure for power inverters regulation

    Get PDF
    The aim of this paper is to critically review prominent decomposed Fuzzy PID control structures. Structural construction and output control laws of these controllers will be discussed. Their merits and drawbacks are highlighted. Based on the critical discussions, a new structure of Fuzzy PID controller is proposed. It is based on cascaded structure, which yields simpler design flow and parameters tuning. Other advantages of the proposed Fuzzy PID structure are the reduction of tuning parameters and rules of the Fuzzy controller. In addition, the proposed structure allows the usage of signed distance method. The application of the method reduces the computation burden significantly as the power inverter regulation needs very fast and precise computation

    Dynamics analysis and integrated design of real-time control systems

    Get PDF
    Real-time control systems are widely deployed in many applications. Theory and practice for the design and deployment of real-time control systems have evolved significantly. From the design perspective, control strategy development has been the focus of the research in the control community. In order to develop good control strategies, process modelling and analysis have been investigated for decades, and stability analysis and model-based control have been heavily studied in the literature. From the implementation perspective, real-time control systems require timeliness and predictable timing behaviour in addition to logical correctness, and a real-time control system may behave very differently with different software implementations of the control strategies on a digital controller, which typically has limited computing resources. Most current research activities on software implementations concentrate on various scheduling methodologies to ensure the schedulability of multiple control tasks in constrained environments. Recently, more and more real-time control systems are implemented over data networks, leading to increasing interest worldwide in the design and implementation of networked control systems (NCS). Major research activities in NCS include control-oriented and scheduling-oriented investigations. In spite of significant progress in the research and development of real-time control systems, major difficulties exist in the state of the art. A key issue is the lack of integrated design for control development and its software implementation. For control design, the model-based control technique, the current focus of control research, does not work when a good process model is not available or is too complicated for control design. For control implementation on digital controllers running multiple tasks, the system schedulability is essential but is not enough; the ultimate objective of satisfactory quality-of-control (QoC) performance has not been addressed directly. For networked control, the majority of the control-oriented investigations are based on two unrealistic assumptions about the network induced delay. The scheduling-oriented research focuses on schedulability and does not directly link to the overall QoC of the system. General solutions with direct QoC consideration from the network perspective to the challenging problems of network delay and packet dropout in NCS have not been found in the literature. This thesis addresses the design and implementation of real-time control systems with regard to dynamics analysis and integrated design. Three related areas have been investigated, namely control development for controllers, control implementation and scheduling on controllers, and real-time control in networked environments. Seven research problems are identified from these areas for investigation in this thesis, and accordingly seven major contributions have been claimed. Timing behaviour, quality of control, and integrated design for real-time control systems are highlighted throughout this thesis. In control design, a model-free control technique, pattern predictive control, is developed for complex reactive distillation processes. Alleviating the requirement of accurate process models, the developed control technique integrates pattern recognition, fuzzy logic, non-linear transformation, and predictive control into a unified framework to solve complex problems. Characterising the QoC indirectly with control latency and jitter, scheduling strategies for multiple control tasks are proposed to minimise the latency and/or jitter. Also, a hierarchical, QoC driven, and event-triggering feedback scheduling architecture is developed with plug-ins of either the earliest-deadline-first or fixed priority scheduling. Linking to the QoC directly, the architecture minimises the use of computing resources without sacrifice of the system QoC. It considers the control requirements, but does not rely on the control design. For real-time NCS, the dynamics of the network delay are analysed first, and the nonuniform distribution and multi-fractal nature of the delay are revealed. These results do not support two fundamental assumptions used in existing NCS literature. Then, considering the control requirements, solutions are provided to the challenging NCS problems from the network perspective. To compensate for the network delay, a real-time queuing protocol is developed to smooth out the time-varying delay and thus to achieve more predictable behaviour of packet transmissions. For control packet dropout, simple yet effective compensators are proposed. Finally, combining the queuing protocol, the packet loss compensation, the configuration of the worst-case communication delay, and the control design, an integrated design framework is developed for real-time NCS. With this framework, the network delay is limited to within a single control period, leading to simplified system analysis and improved QoC

    A novel fuzzy logic scheme for PID controller auto-tuning

    Get PDF
    This paper presents a novel method for PID (proportional–integral–derivative) controller auto-tuning based on expert knowledge incorporated into a fuzzy logic inference system. The proposed scheme iteratively tries to improve the performance of the closed-loop system. As performance measures, the proposed scheme uses the characteristics of the step response (rise time, overshoot, and settling time). PID parameters in the first iteration can be calculated based on the basic open-loop step response experiment or it is possible to use current parameters. In each successive iteration, step response characteristics are measured and the relative changes expressed in the percentage of value in the first iteration are calculated and converted into linguistic values. The fuzzy expert system computes fuzzy values that are used after defuzzification as multiplying factors for current PID parameters. To achieve a balance between the aggressive and robust closed-loop response, as well as between the slower and the faster one, the fuzzy expert system works in three operating modes: the one for speeding up the system, the one for reducing the overshoot, and the one for a balanced reduction of rise time and overshoot. The performance and robustness are verified by computer simulation using an extensive range of different processes

    Effect of Varying Controller Parameters on the Performance of a Fuzzy Logic Control System

    Get PDF
    This paper presents the results of computer simulation studies designed to isolate the effects of the major parameters of a fuzzy logic controller namely the range of the universe of discourse, the extent of overlap of the fuzzy sets, the rules in the rule base and the modes of the output fuzzy sets on the performance of a fuzzy logic control system. The controlled process was modeled by a nonlinear differential equation that was solved using the Runge-Kutta numerical method. The results show that varying the range of the universe of discourse of the inputs to the fuzzy controller affects both the transient response and the steady state error of the system, and that a desired system response could be achieved by adjusting the modes of the output fuzzy sets given a fairly good rule base. It has also been shown that the system response could be fine-tuned by varying the overlap of the input fuzzy sets.
    • …
    corecore