3,942 research outputs found

    Decomposed Adversarial Learned Inference

    Full text link
    Effective inference for a generative adversarial model remains an important and challenging problem. We propose a novel approach, Decomposed Adversarial Learned Inference (DALI), which explicitly matches prior and conditional distributions in both data and code spaces, and puts a direct constraint on the dependency structure of the generative model. We derive an equivalent form of the prior and conditional matching objective that can be optimized efficiently without any parametric assumption on the data. We validate the effectiveness of DALI on the MNIST, CIFAR-10, and CelebA datasets by conducting quantitative and qualitative evaluations. Results demonstrate that DALI significantly improves both reconstruction and generation as compared to other adversarial inference models

    A Plug-in Method for Representation Factorization in Connectionist Models

    Full text link
    In this article, we focus on decomposing latent representations in generative adversarial networks or learned feature representations in deep autoencoders into semantically controllable factors in a semisupervised manner, without modifying the original trained models. Particularly, we propose factors' decomposer-entangler network (FDEN) that learns to decompose a latent representation into mutually independent factors. Given a latent representation, the proposed framework draws a set of interpretable factors, each aligned to independent factors of variations by minimizing their total correlation in an information-theoretic means. As a plug-in method, we have applied our proposed FDEN to the existing networks of adversarially learned inference and pioneer network and performed computer vision tasks of image-to-image translation in semantic ways, e.g., changing styles, while keeping the identity of a subject, and object classification in a few-shot learning scheme. We have also validated the effectiveness of the proposed method with various ablation studies in the qualitative, quantitative, and statistical examination.Comment: in IEEE Transactions on Neural Networks and Learning Systems, 202

    Robust Question Answering Through Sub-part Alignment

    Full text link
    Current textual question answering models achieve strong performance on in-domain test sets, but often do so by fitting surface-level patterns in the data, so they fail to generalize to out-of-distribution settings. To make a more robust and understandable QA system, we model question answering as an alignment problem. We decompose both the question and context into smaller units based on off-the-shelf semantic representations (here, semantic roles), and align the question to a subgraph of the context in order to find the answer. We formulate our model as a structured SVM, with alignment scores computed via BERT, and we can train end-to-end despite using beam search for approximate inference. Our explicit use of alignments allows us to explore a set of constraints with which we can prohibit certain types of bad model behavior arising in cross-domain settings. Furthermore, by investigating differences in scores across different potential answers, we can seek to understand what particular aspects of the input lead the model to choose the answer without relying on post-hoc explanation techniques. We train our model on SQuAD v1.1 and test it on several adversarial and out-of-domain datasets. The results show that our model is more robust cross-domain than the standard BERT QA model, and constraints derived from alignment scores allow us to effectively trade off coverage and accuracy

    Attribute Guided Unpaired Image-to-Image Translation with Semi-supervised Learning

    Full text link
    Unpaired Image-to-Image Translation (UIT) focuses on translating images among different domains by using unpaired data, which has received increasing research focus due to its practical usage. However, existing UIT schemes defect in the need of supervised training, as well as the lack of encoding domain information. In this paper, we propose an Attribute Guided UIT model termed AGUIT to tackle these two challenges. AGUIT considers multi-modal and multi-domain tasks of UIT jointly with a novel semi-supervised setting, which also merits in representation disentanglement and fine control of outputs. Especially, AGUIT benefits from two-fold: (1) It adopts a novel semi-supervised learning process by translating attributes of labeled data to unlabeled data, and then reconstructing the unlabeled data by a cycle consistency operation. (2) It decomposes image representation into domain-invariant content code and domain-specific style code. The redesigned style code embeds image style into two variables drawn from standard Gaussian distribution and the distribution of domain label, which facilitates the fine control of translation due to the continuity of both variables. Finally, we introduce a new challenge, i.e., disentangled transfer, for UIT models, which adopts the disentangled representation to translate data less related with the training set. Extensive experiments demonstrate the capacity of AGUIT over existing state-of-the-art models

    An inner-loop free solution to inverse problems using deep neural networks

    Full text link
    We propose a new method that uses deep learning techniques to accelerate the popular alternating direction method of multipliers (ADMM) solution for inverse problems. The ADMM updates consist of a proximity operator, a least squares regression that includes a big matrix inversion, and an explicit solution for updating the dual variables. Typically, inner loops are required to solve the first two sub-minimization problems due to the intractability of the prior and the matrix inversion. To avoid such drawbacks or limitations, we propose an inner-loop free update rule with two pre-trained deep convolutional architectures. More specifically, we learn a conditional denoising auto-encoder which imposes an implicit data-dependent prior/regularization on ground-truth in the first sub-minimization problem. This design follows an empirical Bayesian strategy, leading to so-called amortized inference. For matrix inversion in the second sub-problem, we learn a convolutional neural network to approximate the matrix inversion, i.e., the inverse mapping is learned by feeding the input through the learned forward network. Note that training this neural network does not require ground-truth or measurements, i.e., it is data-independent. Extensive experiments on both synthetic data and real datasets demonstrate the efficiency and accuracy of the proposed method compared with the conventional ADMM solution using inner loops for solving inverse problems

    Quantization-Based Regularization for Autoencoders

    Full text link
    Autoencoders and their variations provide unsupervised models for learning low-dimensional representations for downstream tasks. Without proper regularization, autoencoder models are susceptible to the overfitting problem and the so-called posterior collapse phenomenon. In this paper, we introduce a quantization-based regularizer in the bottleneck stage of autoencoder models to learn meaningful latent representations. We combine both perspectives of Vector Quantized-Variational AutoEncoders (VQ-VAE) and classical denoising regularization methods of neural networks. We interpret quantizers as regularizers that constrain latent representations while fostering a similarity-preserving mapping at the encoder. Before quantization, we impose noise on the latent codes and use a Bayesian estimator to optimize the quantizer-based representation. The introduced bottleneck Bayesian estimator outputs the posterior mean of the centroids to the decoder, and thus, is performing soft quantization of the noisy latent codes. We show that our proposed regularization method results in improved latent representations for both supervised learning and clustering downstream tasks when compared to autoencoders using other bottleneck structures.Comment: AAAI 202

    InverseNet: Solving Inverse Problems with Splitting Networks

    Full text link
    We propose a new method that uses deep learning techniques to solve the inverse problems. The inverse problem is cast in the form of learning an end-to-end mapping from observed data to the ground-truth. Inspired by the splitting strategy widely used in regularized iterative algorithm to tackle inverse problems, the mapping is decomposed into two networks, with one handling the inversion of the physical forward model associated with the data term and one handling the denoising of the output from the former network, i.e., the inverted version, associated with the prior/regularization term. The two networks are trained jointly to learn the end-to-end mapping, getting rid of a two-step training. The training is annealing as the intermediate variable between these two networks bridges the gap between the input (the degraded version of output) and output and progressively approaches to the ground-truth. The proposed network, referred to as InverseNet, is flexible in the sense that most of the existing end-to-end network structure can be leveraged in the first network and most of the existing denoising network structure can be used in the second one. Extensive experiments on both synthetic data and real datasets on the tasks, motion deblurring, super-resolution, and colorization, demonstrate the efficiency and accuracy of the proposed method compared with other image processing algorithms

    Modeling Uncertainty by Learning a Hierarchy of Deep Neural Connections

    Full text link
    Modeling uncertainty in deep neural networks, despite recent important advances, is still an open problem. Bayesian neural networks are a powerful solution, where the prior over network weights is a design choice, often a normal distribution or other distribution encouraging sparsity. However, this prior is agnostic to the generative process of the input data, which might lead to unwarranted generalization for out-of-distribution tested data. We suggest the presence of a confounder for the relation between the input data and the discriminative function given the target label. We propose an approach for modeling this confounder by sharing neural connectivity patterns between the generative and discriminative networks. This approach leads to a new deep architecture, where networks are sampled from the posterior of local causal structures, and coupled into a compact hierarchy. We demonstrate that sampling networks from this hierarchy, proportionally to their posterior, is efficient and enables estimating various types of uncertainties. Empirical evaluations of our method demonstrate significant improvement compared to state-of-the-art calibration and out-of-distribution detection methods

    Causal Generative Domain Adaptation Networks

    Full text link
    An essential problem in domain adaptation is to understand and make use of distribution changes across domains. For this purpose, we first propose a flexible Generative Domain Adaptation Network (G-DAN) with specific latent variables to capture changes in the generating process of features across domains. By explicitly modeling the changes, one can even generate data in new domains using the generating process with new values for the latent variables in G-DAN. In practice, the process to generate all features together may involve high-dimensional latent variables, requiring dealing with distributions in high dimensions and making it difficult to learn domain changes from few source domains. Interestingly, by further making use of the causal representation of joint distributions, we then decompose the joint distribution into separate modules, each of which involves different low-dimensional latent variables and can be learned separately, leading to a Causal G-DAN (CG-DAN). This improves both statistical and computational efficiency of the learning procedure. Finally, by matching the feature distribution in the target domain, we can recover the target-domain joint distribution and derive the learning machine for the target domain. We demonstrate the efficacy of both G-DAN and CG-DAN in domain generation and cross-domain prediction on both synthetic and real data experiments.Comment: 12 page

    Kernel Implicit Variational Inference

    Full text link
    Recent progress in variational inference has paid much attention to the flexibility of variational posteriors. One promising direction is to use implicit distributions, i.e., distributions without tractable densities as the variational posterior. However, existing methods on implicit posteriors still face challenges of noisy estimation and computational infeasibility when applied to models with high-dimensional latent variables. In this paper, we present a new approach named Kernel Implicit Variational Inference that addresses these challenges. As far as we know, for the first time implicit variational inference is successfully applied to Bayesian neural networks, which shows promising results on both regression and classification tasks.Comment: Published as a conference paper at ICLR 201
    • …
    corecore