16,115 research outputs found

    Differentially Private Decomposable Submodular Maximization

    Full text link
    We study the problem of differentially private constrained maximization of decomposable submodular functions. A submodular function is decomposable if it takes the form of a sum of submodular functions. The special case of maximizing a monotone, decomposable submodular function under cardinality constraints is known as the Combinatorial Public Projects (CPP) problem [Papadimitriou et al., 2008]. Previous work by Gupta et al. [2010] gave a differentially private algorithm for the CPP problem. We extend this work by designing differentially private algorithms for both monotone and non-monotone decomposable submodular maximization under general matroid constraints, with competitive utility guarantees. We complement our theoretical bounds with experiments demonstrating empirical performance, which improves over the differentially private algorithms for the general case of submodular maximization and is close to the performance of non-private algorithms

    Self-decomposable Global Constraints

    Get PDF
    International audienceScalability becomes more and more critical to decision support technologies. In order to address this issue in Constraint Programming, we introduce the family of self-decomposable constraints. These constraints can be satisfied by applying their own filtering algorithms on variable subsets only. We introduce a generic framework which dynamically decompose propagation, by filtering over variable subsets. Our experiments over the CUMULATIVE constraint illustrate the practical relevance of self-decomposition

    Distributed Low-rank Subspace Segmentation

    Full text link
    Vision problems ranging from image clustering to motion segmentation to semi-supervised learning can naturally be framed as subspace segmentation problems, in which one aims to recover multiple low-dimensional subspaces from noisy and corrupted input data. Low-Rank Representation (LRR), a convex formulation of the subspace segmentation problem, is provably and empirically accurate on small problems but does not scale to the massive sizes of modern vision datasets. Moreover, past work aimed at scaling up low-rank matrix factorization is not applicable to LRR given its non-decomposable constraints. In this work, we propose a novel divide-and-conquer algorithm for large-scale subspace segmentation that can cope with LRR's non-decomposable constraints and maintains LRR's strong recovery guarantees. This has immediate implications for the scalability of subspace segmentation, which we demonstrate on a benchmark face recognition dataset and in simulations. We then introduce novel applications of LRR-based subspace segmentation to large-scale semi-supervised learning for multimedia event detection, concept detection, and image tagging. In each case, we obtain state-of-the-art results and order-of-magnitude speed ups

    On tree decomposability of Henneberg graphs

    Get PDF
    In this work we describe an algorithm that generates well constrained geometric constraint graphs which are solvable by the tree-decomposition constructive technique. The algorithm is based on Henneberg constructions and would be of help in transforming underconstrained problems into well constrained problems as well as in exploring alternative constructions over a given set of geometric elements.Postprint (published version

    The complexity of global cardinality constraints

    Full text link
    In a constraint satisfaction problem (CSP) the goal is to find an assignment of a given set of variables subject to specified constraints. A global cardinality constraint is an additional requirement that prescribes how many variables must be assigned a certain value. We study the complexity of the problem CCSP(G), the constraint satisfaction problem with global cardinality constraints that allows only relations from the set G. The main result of this paper characterizes sets G that give rise to problems solvable in polynomial time, and states that the remaining such problems are NP-complete

    FNNC: Achieving Fairness through Neural Networks

    Full text link
    In classification models fairness can be ensured by solving a constrained optimization problem. We focus on fairness constraints like Disparate Impact, Demographic Parity, and Equalized Odds, which are non-decomposable and non-convex. Researchers define convex surrogates of the constraints and then apply convex optimization frameworks to obtain fair classifiers. Surrogates serve only as an upper bound to the actual constraints, and convexifying fairness constraints might be challenging. We propose a neural network-based framework, \emph{FNNC}, to achieve fairness while maintaining high accuracy in classification. The above fairness constraints are included in the loss using Lagrangian multipliers. We prove bounds on generalization errors for the constrained losses which asymptotically go to zero. The network is optimized using two-step mini-batch stochastic gradient descent. Our experiments show that FNNC performs as good as the state of the art, if not better. The experimental evidence supplements our theoretical guarantees. In summary, we have an automated solution to achieve fairness in classification, which is easily extendable to many fairness constraints

    A structural Markov property for decomposable graph laws that allows control of clique intersections

    Full text link
    We present a new kind of structural Markov property for probabilistic laws on decomposable graphs, which allows the explicit control of interactions between cliques, so is capable of encoding some interesting structure. We prove the equivalence of this property to an exponential family assumption, and discuss identifiability, modelling, inferential and computational implications.Comment: 10 pages, 3 figures; updated from V1 following journal review, new more explicit title and added section on inferenc

    Nonplanar On-shell Diagrams and Leading Singularities of Scattering Amplitudes

    Full text link
    Bipartite on-shell diagrams are the latest tool in constructing scattering amplitudes. In this paper we prove that a Britto-Cachazo-Feng-Witten (BCFW)-decomposable on-shell diagram process a rational top-form if and only if the algebraic ideal comprised of the geometrical constraints is shifted linearly during successive BCFW integrations. With a proper geometric interpretation of the constraints in the Grassmannian manifold, the rational top-form integration contours can thus be obtained, and understood, in a straightforward way. All rational top-form integrands of arbitrary higher loops leading singularities can therefore be derived recursively, as long as the corresponding on-shell diagram is BCFW-decomposable.Comment: 13 pages with 12 figures; final version appeared in Eur.Phys.J. C77 (2017) no.2, 8
    • …
    corecore