9,719 research outputs found

    Decomposable Theories

    Full text link
    We present in this paper a general algorithm for solving first-order formulas in particular theories called "decomposable theories". First of all, using special quantifiers, we give a formal characterization of decomposable theories and show some of their properties. Then, we present a general algorithm for solving first-order formulas in any decomposable theory "T". The algorithm is given in the form of five rewriting rules. It transforms a first-order formula "P", which can possibly contain free variables, into a conjunction "Q" of solved formulas easily transformable into a Boolean combination of existentially quantified conjunctions of atomic formulas. In particular, if "P" has no free variables then "Q" is either the formula "true" or "false". The correctness of our algorithm proves the completeness of the decomposable theories. Finally, we show that the theory "Tr" of finite or infinite trees is a decomposable theory and give some benchmarks realized by an implementation of our algorithm, solving formulas on two-partner games in "Tr" with more than 160 nested alternated quantifiers

    Transformations among large c conformal field theories

    Full text link
    We show that there is a set of transformations that relates all of the 24 dimensional even self-dual (Niemeier) lattices, and also leads to non-lattice objects that however cannot be interpreted as a basis for the construction of holomorphic conformal field theory. In the second part of this paper, we extend our observations to higher dimensional conformal field theories build on extremal partition functions, where we generate c=24k theories with spectra decomposable into the irreducible representations of the Fischer-Griess Monster. We observe interesting periodicities in the coefficients of extremal partition functions and characters of the extremal vertex operator algebras.Comment: 14 pages, minor corrections, new references adde

    Pre-multisymplectic constraint algorithm for field theories

    Full text link
    We present a geometric algorithm for obtaining consistent solutions to systems of partial differential equations, mainly arising from singular covariant first-order classical field theories. This algorithm gives an intrinsic description of all the constraint submanifolds. The field equations are stated geometrically, either representing their solutions by integrable connections or, what is equivalent, by certain kinds of integrable m-vector fields. First, we consider the problem of finding connections or multivector fields solutions to the field equations in a general framework: a pre-multisymplectic fibre bundle (which will be identified with the first-order jet bundle and the multimomentum bundle when Lagrangian and Hamiltonian field theories are considered). Then, the problem is stated and solved in a linear context, and a pointwise application of the results leads to the algorithm for the general case. In a second step, the integrability of the solutions is also studied. Finally, the method is applied to Lagrangian and Hamiltonian field theories and, for the former, the problem of finding holonomic solutions is also analized.Comment: 30 pp. Presented in the International Workshop on Geometric Methods in Modern Physics (Firenze, April 2005

    A new multisymplectic unified formalism for second-order classical field theories

    Get PDF
    We present a new multisymplectic framework for second-order classical field theories which is based on an extension of the unified Lagrangian-Hamiltonian formalism to these kinds of systems. This model provides a straightforward and simple way to define the Poincar\'e-Cartan form and clarifies the construction of the Legendre map (univocally obtained as a consequence of the constraint algorithm). Likewise, it removes the undesirable arbitrariness in the solutions to the field equations, which are analyzed in-depth, and written in terms of holonomic sections and multivector fields. Our treatment therefore completes previous attempt to achieve this aim. The formulation is applied to describing some physical examples; in particular, to giving another alternative multisymplectic description of the Korteweg-de Vries equation.Comment: 52 pp. Revision of our previous paper. Minor corrections on the statement of some results. A new example is added (Section 6.1). Conclusions and bibliography have been enlarged, and some comments on the higher-order case have been adde

    Multivector Fields and Connections. Setting Lagrangian Equations in Field Theories

    Full text link
    The integrability of multivector fields in a differentiable manifold is studied. Then, given a jet bundle J1E→E→MJ^1E\to E\to M, it is shown that integrable multivector fields in EE are equivalent to integrable connections in the bundle E→ME\to M (that is, integrable jet fields in J1EJ^1E). This result is applied to the particular case of multivector fields in the manifold J1EJ^1E and connections in the bundle J1E→MJ^1E\to M (that is, jet fields in the repeated jet bundle J1J1EJ^1J^1E), in order to characterize integrable multivector fields and connections whose integral manifolds are canonical lifting of sections. These results allow us to set the Lagrangian evolution equations for first-order classical field theories in three equivalent geometrical ways (in a form similar to that in which the Lagrangian dynamical equations of non-autonomous mechanical systems are usually given). Then, using multivector fields; we discuss several aspects of these evolution equations (both for the regular and singular cases); namely: the existence and non-uniqueness of solutions, the integrability problem and Noether's theorem; giving insights into the differences between mechanics and field theories.Comment: New sections on integrability of Multivector Fields and applications to Field Theory (including some examples) are added. The title has been slightly modified. To be published in J. Math. Phy

    A geometrical analysis of the field equations in field theory

    Full text link
    In this review paper we give a geometrical formulation of the field equations in the Lagrangian and Hamiltonian formalisms of classical field theories (of first order) in terms of multivector fields. This formulation enables us to discuss the existence and non-uniqueness of solutions, as well as their integrability.Comment: 14 pages. LaTeX file. This is a review paper based on previous works by the same author

    Quasi-chemical Theories of Associated Liquids

    Full text link
    It is shown how traditional development of theories of fluids based upon the concept of physical clustering can be adapted to an alternative local clustering definition. The alternative definition can preserve a detailed valence description of the interactions between a solution species and its near-neighbors, i.e., cooperativity and saturation of coordination for strong association. These clusters remain finite even for condensed phases. The simplest theory to which these developments lead is analogous to quasi-chemical theories of cooperative phenomena. The present quasi-chemical theories require additional consideration of packing issues because they don't impose lattice discretizations on the continuous problem. These quasi-chemical theories do not require pair decomposable interaction potential energy models. Since calculations may be required only for moderately sized clusters, we suggest that these quasi-chemical theories could be implemented with computational tools of current electronic structure theory. This can avoid an intermediate step of approximate force field generation.Comment: 20 pages, no figures replacement: minor typographical corrections, four references added, in press Molec. Physics 199
    • 

    corecore