753 research outputs found

    On the Duality of Semiantichains and Unichain Coverings

    Full text link
    We study a min-max relation conjectured by Saks and West: For any two posets PP and QQ the size of a maximum semiantichain and the size of a minimum unichain covering in the product P×QP\times Q are equal. For positive we state conditions on PP and QQ that imply the min-max relation. Based on these conditions we identify some new families of posets where the conjecture holds and get easy proofs for several instances where the conjecture had been verified before. However, we also have examples showing that in general the min-max relation is false, i.e., we disprove the Saks-West conjecture.Comment: 10 pages, 3 figure

    Computing symmetry groups of polyhedra

    Full text link
    Knowing the symmetries of a polyhedron can be very useful for the analysis of its structure as well as for practical polyhedral computations. In this note, we study symmetry groups preserving the linear, projective and combinatorial structure of a polyhedron. In each case we give algorithmic methods to compute the corresponding group and discuss some practical experiences. For practical purposes the linear symmetry group is the most important, as its computation can be directly translated into a graph automorphism problem. We indicate how to compute integral subgroups of the linear symmetry group that are used for instance in integer linear programming.Comment: 20 pages, 1 figure; containing a corrected and improved revisio

    Combinatorial Penalties: Which structures are preserved by convex relaxations?

    Get PDF
    We consider the homogeneous and the non-homogeneous convex relaxations for combinatorial penalty functions defined on support sets. Our study identifies key differences in the tightness of the resulting relaxations through the notion of the lower combinatorial envelope of a set-function along with new necessary conditions for support identification. We then propose a general adaptive estimator for convex monotone regularizers, and derive new sufficient conditions for support recovery in the asymptotic setting

    Recent progress on the combinatorial diameter of polytopes and simplicial complexes

    Full text link
    The Hirsch conjecture, posed in 1957, stated that the graph of a dd-dimensional polytope or polyhedron with nn facets cannot have diameter greater than n−dn - d. The conjecture itself has been disproved, but what we know about the underlying question is quite scarce. Most notably, no polynomial upper bound is known for the diameters that were conjectured to be linear. In contrast, no polyhedron violating the conjecture by more than 25% is known. This paper reviews several recent attempts and progress on the question. Some work in the world of polyhedra or (more often) bounded polytopes, but some try to shed light on the question by generalizing it to simplicial complexes. In particular, we include here our recent and previously unpublished proof that the maximum diameter of arbitrary simplicial complexes is in nTheta(d)n^{Theta(d)} and we summarize the main ideas in the polymath 3 project, a web-based collective effort trying to prove an upper bound of type nd for the diameters of polyhedra and of more general objects (including, e. g., simplicial manifolds).Comment: 34 pages. This paper supersedes one cited as "On the maximum diameter of simplicial complexes and abstractions of them, in preparation

    Measured descent: A new embedding method for finite metrics

    Full text link
    We devise a new embedding technique, which we call measured descent, based on decomposing a metric space locally, at varying speeds, according to the density of some probability measure. This provides a refined and unified framework for the two primary methods of constructing Frechet embeddings for finite metrics, due to [Bourgain, 1985] and [Rao, 1999]. We prove that any n-point metric space (X,d) embeds in Hilbert space with distortion O(sqrt{alpha_X log n}), where alpha_X is a geometric estimate on the decomposability of X. As an immediate corollary, we obtain an O(sqrt{(log lambda_X) \log n}) distortion embedding, where \lambda_X is the doubling constant of X. Since \lambda_X\le n, this result recovers Bourgain's theorem, but when the metric X is, in a sense, ``low-dimensional,'' improved bounds are achieved. Our embeddings are volume-respecting for subsets of arbitrary size. One consequence is the existence of (k, O(log n)) volume-respecting embeddings for all 1 \leq k \leq n, which is the best possible, and answers positively a question posed by U. Feige. Our techniques are also used to answer positively a question of Y. Rabinovich, showing that any weighted n-point planar graph embeds in l_\infty^{O(log n)} with O(1) distortion. The O(log n) bound on the dimension is optimal, and improves upon the previously known bound of O((log n)^2).Comment: 17 pages. No figures. Appeared in FOCS '04. To appeaer in Geometric & Functional Analysis. This version fixes a subtle error in Section 2.

    Structured sparsity-inducing norms through submodular functions

    Get PDF
    Sparse methods for supervised learning aim at finding good linear predictors from as few variables as possible, i.e., with small cardinality of their supports. This combinatorial selection problem is often turned into a convex optimization problem by replacing the cardinality function by its convex envelope (tightest convex lower bound), in this case the L1-norm. In this paper, we investigate more general set-functions than the cardinality, that may incorporate prior knowledge or structural constraints which are common in many applications: namely, we show that for nondecreasing submodular set-functions, the corresponding convex envelope can be obtained from its \lova extension, a common tool in submodular analysis. This defines a family of polyhedral norms, for which we provide generic algorithmic tools (subgradients and proximal operators) and theoretical results (conditions for support recovery or high-dimensional inference). By selecting specific submodular functions, we can give a new interpretation to known norms, such as those based on rank-statistics or grouped norms with potentially overlapping groups; we also define new norms, in particular ones that can be used as non-factorial priors for supervised learning

    Near-Optimal Algorithms for Online Matrix Prediction

    Full text link
    In several online prediction problems of recent interest the comparison class is composed of matrices with bounded entries. For example, in the online max-cut problem, the comparison class is matrices which represent cuts of a given graph and in online gambling the comparison class is matrices which represent permutations over n teams. Another important example is online collaborative filtering in which a widely used comparison class is the set of matrices with a small trace norm. In this paper we isolate a property of matrices, which we call (beta,tau)-decomposability, and derive an efficient online learning algorithm, that enjoys a regret bound of O*(sqrt(beta tau T)) for all problems in which the comparison class is composed of (beta,tau)-decomposable matrices. By analyzing the decomposability of cut matrices, triangular matrices, and low trace-norm matrices, we derive near optimal regret bounds for online max-cut, online gambling, and online collaborative filtering. In particular, this resolves (in the affirmative) an open problem posed by Abernethy (2010); Kleinberg et al (2010). Finally, we derive lower bounds for the three problems and show that our upper bounds are optimal up to logarithmic factors. In particular, our lower bound for the online collaborative filtering problem resolves another open problem posed by Shamir and Srebro (2011).Comment: 25 page

    On tree decomposability of Henneberg graphs

    Get PDF
    In this work we describe an algorithm that generates well constrained geometric constraint graphs which are solvable by the tree-decomposition constructive technique. The algorithm is based on Henneberg constructions and would be of help in transforming underconstrained problems into well constrained problems as well as in exploring alternative constructions over a given set of geometric elements.Postprint (published version
    • 

    corecore