8,957 research outputs found

    An Affect-Rich Neural Conversational Model with Biased Attention and Weighted Cross-Entropy Loss

    Full text link
    Affect conveys important implicit information in human communication. Having the capability to correctly express affect during human-machine conversations is one of the major milestones in artificial intelligence. In recent years, extensive research on open-domain neural conversational models has been conducted. However, embedding affect into such models is still under explored. In this paper, we propose an end-to-end affect-rich open-domain neural conversational model that produces responses not only appropriate in syntax and semantics, but also with rich affect. Our model extends the Seq2Seq model and adopts VAD (Valence, Arousal and Dominance) affective notations to embed each word with affects. In addition, our model considers the effect of negators and intensifiers via a novel affective attention mechanism, which biases attention towards affect-rich words in input sentences. Lastly, we train our model with an affect-incorporated objective function to encourage the generation of affect-rich words in the output responses. Evaluations based on both perplexity and human evaluations show that our model outperforms the state-of-the-art baseline model of comparable size in producing natural and affect-rich responses.Comment: AAAI-1

    Pattern classification of valence in depression

    Get PDF
    Copyright @ The authors, 2013. This is an open access article available under Creative Commons Licence, CC-BY-NC-ND 3.0.Neuroimaging biomarkers of depression have potential to aid diagnosis, identify individuals at risk and predict treatment response or course of illness. Nevertheless none have been identified so far, potentially because no single brain parameter captures the complexity of the pathophysiology of depression. Multi-voxel pattern analysis (MVPA) may overcome this issue as it can identify patterns of voxels that are spatially distributed across the brain. Here we present the results of an MVPA to investigate the neuronal patterns underlying passive viewing of positive, negative and neutral pictures in depressed patients. A linear support vector machine (SVM) was trained to discriminate different valence conditions based on the functional magnetic resonance imaging (fMRI) data of nine unipolar depressed patients. A similar dataset obtained in nine healthy individuals was included to conduct a group classification analysis via linear discriminant analysis (LDA). Accuracy scores of 86% or higher were obtained for each valence contrast via patterns that included limbic areas such as the amygdala and frontal areas such as the ventrolateral prefrontal cortex. The LDA identified two areas (the dorsomedial prefrontal cortex and caudate nucleus) that allowed group classification with 72.2% accuracy. Our preliminary findings suggest that MVPA can identify stable valence patterns, with more sensitivity than univariate analysis, in depressed participants and that it may be possible to discriminate between healthy and depressed individuals based on differences in the brain's response to emotional cues.This work was supported by a PhD studentship to I.H. from the National Institute for Social Care and Health Research (NISCHR) HS/10/25 and MRC grant G 1100629

    Decoding information in the human hippocampus: a user's guide

    Get PDF
    Multi-voxel pattern analysis (MVPA), or 'decoding', of fMRI activity has gained popularity in the neuroimaging community in recent years. MVPA differs from standard fMRI analyses by focusing on whether information relating to specific stimuli is encoded in patterns of activity across multiple voxels. If a stimulus can be predicted, or decoded, solely from the pattern of fMRI activity, it must mean there is information about that stimulus represented in the brain region where the pattern across voxels was identified. This ability to examine the representation of information relating to specific stimuli (e.g., memories) in particular brain areas makes MVPA an especially suitable method for investigating memory representations in brain structures such as the hippocampus. This approach could open up new opportunities to examine hippocampal representations in terms of their content, and how they might change over time, with aging, and pathology. Here we consider published MVPA studies that specifically focused on the hippocampus, and use them to illustrate the kinds of novel questions that can be addressed using MVPA. We then discuss some of the conceptual and methodological challenges that can arise when implementing MVPA in this context. Overall, we hope to highlight the potential utility of MVPA, when appropriately deployed, and provide some initial guidance to those considering MVPA as a means to investigate the hippocampus

    Decoding social intentions in human prehensile actions: Insights from a combined kinematics-fMRI study

    Get PDF
    Consistent evidence suggests that the way we reach and grasp an object is modulated not only by object properties (e.g., size, shape, texture, fragility and weight), but also by the types of intention driving the action, among which the intention to interact with another agent (i.e., social intention). Action observation studies ascribe the neural substrate of this `intentional' component to the putative mirror neuron (pMNS) and the mentalizing (MS) systems. How social intentions are translated into executed actions, however, has yet to be addressed. We conducted a kinematic and a functional Magnetic Resonance Imaging (fMRI) study considering a reach-to-grasp movement performed towards the same object positioned at the same location but with different intentions: passing it to another person (social condition) or putting it on a concave base (individual condition). Kinematics showed that individual and social intentions are characterized by different profiles, with a slower movement at the level of both the reaching (i.e., arm movement) and the grasping (i.e., hand aperture) components. fMRI results showed that: (i) distinct voxel pattern activity for the social and the individual condition are present within the pMNS and the MS during action execution; (ii) decoding accuracies of regions belonging to the pMNS and the MS are correlated, suggesting that these two systems could interact for the generation of appropriate motor commands. Results are discussed in terms of motor simulation and inferential processes as part of a hierarchical generative model for action intention understanding and generation of appropriate motor commands

    The brain's response to pleasant touch: an EEG investigation of tactile caressing

    Get PDF
    Somatosensation as a proximal sense can have a strong impact on our attitude toward physical objects and other human beings. However, relatively little is known about how hedonic valence of touch is processed at the cortical level. Here we investigated the electrophysiological correlates of affective tactile sensation during caressing of the right forearm with pleasant and unpleasant textile fabrics. We show dissociation between more physically driven differential brain responses to the different fabrics in early somatosensory cortex - the well-known mu-suppression (10-20 Hz) - and a beta-band response (25-30 Hz) in presumably higher-order somatosensory areas in the right hemisphere that correlated well with the subjective valence of tactile caressing. Importantly, when using single trial classification techniques, beta-power significantly distinguished between pleasant and unpleasant stimulation on a single trial basis with high accuracy. Our results therefore suggest a dissociation of the sensory and affective aspects of touch in the somatosensory system and may provide features that may be used for single trial decoding of affective mental states from simple electroencephalographic measurements

    Using fMRI in experimental philosophy: Exploring the prospects

    Get PDF
    This chapter analyses the prospects of using neuroimaging methods, in particular functional magnetic resonance imaging (fMRI), for philosophical purposes. To do so, it will use two case studies from the field of emotion research: Greene et al. (2001) used fMRI to uncover the mental processes underlying moral intuitions, while Lindquist et al. (2012) used fMRI to inform the debate around the nature of a specific mental process, namely, emotion. These studies illustrate two main approaches in cognitive neuroscience: Reverse inference and ontology testing, respectively. With regards to Greene et al.’s study, the use of Neurosynth (Yarkoni 2011) will show that the available formulations of reverse inference, although viable a priori, seem to be of limited use in practice. On the other hand, the discussion of Lindquist et al.’s study will present the so far neglected potential of ontology-testing approaches to inform philosophical questions
    corecore