475 research outputs found

    On the Decoding Complexity of Cyclic Codes Up to the BCH Bound

    Full text link
    The standard algebraic decoding algorithm of cyclic codes [n,k,d][n,k,d] up to the BCH bound tt is very efficient and practical for relatively small nn while it becomes unpractical for large nn as its computational complexity is O(nt)O(nt). Aim of this paper is to show how to make this algebraic decoding computationally more efficient: in the case of binary codes, for example, the complexity of the syndrome computation drops from O(nt)O(nt) to O(tn)O(t\sqrt n), and that of the error location from O(nt)O(nt) to at most max{O(tn),O(t2log(t)log(n))}\max \{O(t\sqrt n), O(t^2\log(t)\log(n))\}.Comment: accepted for publication in Proceedings ISIT 2011. IEEE copyrigh

    Decoding Generalized Reed-Solomon Codes and Its Application to RLCE Encryption Schemes

    Get PDF
    This paper compares the efficiency of various algorithms for implementing quantum resistant public key encryption scheme RLCE on 64-bit CPUs. By optimizing various algorithms for polynomial and matrix operations over finite fields, we obtained several interesting (or even surprising) results. For example, it is well known (e.g., Moenck 1976 \cite{moenck1976practical}) that Karatsuba's algorithm outperforms classical polynomial multiplication algorithm from the degree 15 and above (practically, Karatsuba's algorithm only outperforms classical polynomial multiplication algorithm from the degree 35 and above ). Our experiments show that 64-bit optimized Karatsuba's algorithm will only outperform 64-bit optimized classical polynomial multiplication algorithm for polynomials of degree 115 and above over finite field GF(210)GF(2^{10}). The second interesting (surprising) result shows that 64-bit optimized Chien's search algorithm ourperforms all other 64-bit optimized polynomial root finding algorithms such as BTA and FFT for polynomials of all degrees over finite field GF(210)GF(2^{10}). The third interesting (surprising) result shows that 64-bit optimized Strassen matrix multiplication algorithm only outperforms 64-bit optimized classical matrix multiplication algorithm for matrices of dimension 750 and above over finite field GF(210)GF(2^{10}). It should be noted that existing literatures and practices recommend Strassen matrix multiplication algorithm for matrices of dimension 40 and above. All our experiments are done on a 64-bit MacBook Pro with i7 CPU and single thread C codes. It should be noted that the reported results should be appliable to 64 or larger bits CPU architectures. For 32 or smaller bits CPUs, these results may not be applicable. The source code and library for the algorithms covered in this paper are available at http://quantumca.org/

    Stabilizer codes from modified symplectic form

    Full text link
    Stabilizer codes form an important class of quantum error correcting codes which have an elegant theory, efficient error detection, and many known examples. Constructing stabilizer codes of length nn is equivalent to constructing subspaces of Fpn×Fpn\mathbb{F}_p^n \times \mathbb{F}_p^n which are "isotropic" under the symplectic bilinear form defined by (a,b),(c,d)=aTdbTc\left\langle (\mathbf{a},\mathbf{b}),(\mathbf{c},\mathbf{d}) \right\rangle = \mathbf{a}^{\mathrm{T}} \mathbf{d} - \mathbf{b}^{\mathrm{T}} \mathbf{c}. As a result, many, but not all, ideas from the theory of classical error correction can be translated to quantum error correction. One of the main theoretical contribution of this article is to study stabilizer codes starting with a different symplectic form. In this paper, we concentrate on cyclic codes. Modifying the symplectic form allows us to generalize the previous known construction for linear cyclic stabilizer codes, and in the process, circumvent some of the Galois theoretic no-go results proved there. More importantly, this tweak in the symplectic form allows us to make use of well known error correcting algorithms for cyclic codes to give efficient quantum error correcting algorithms. Cyclicity of error correcting codes is a "basis dependent" property. Our codes are no more "cyclic" when they are derived using the standard symplectic forms (if we ignore the error correcting properties like distance, all such symplectic forms can be converted to each other via a basis transformation). Hence this change of perspective is crucial from the point of view of designing efficient decoding algorithm for these family of codes. In this context, recall that for general codes, efficient decoding algorithms do not exist if some widely believed complexity theoretic assumptions are true

    Re-encoding reformulation and application to Welch-Berlekamp algorithm

    Full text link
    The main decoding algorithms for Reed-Solomon codes are based on a bivariate interpolation step, which is expensive in time complexity. Lot of interpolation methods were proposed in order to decrease the complexity of this procedure, but they stay still expensive. Then Koetter, Ma and Vardy proposed in 2010 a technique, called re-encoding, which allows to reduce the practical running time. However, this trick is only devoted for the Koetter interpolation algorithm. We propose a reformulation of the re-encoding for any interpolation methods. The assumption for this reformulation permits only to apply it to the Welch-Berlekamp algorithm

    Codes for the Quantum Erasure Channel

    Get PDF
    The quantum erasure channel (QEC) is considered. Codes for the QEC have to correct for erasures, i. e., arbitrary errors at known positions. We show that four qubits are necessary and sufficient to encode one qubit and correct one erasure, in contrast to five qubits for unknown positions. Moreover, a family of quantum codes for the QEC, the quantum BCH codes, that can be efficiently decoded is introduced.Comment: 6 pages, RevTeX, no figures, submitted to Physical Review A, code extended to encode 2 qubits, references adde

    Minimal Polynomial Algorithms for Finite Sequences

    Full text link
    We show that a straightforward rewrite of a known minimal polynomial algorithm yields a simpler version of a recent algorithm of A. Salagean.Comment: Section 2 added, remarks and references expanded. To appear in IEEE Transactions on Information Theory
    corecore