315 research outputs found

    A Reconfigurable Outer Modem Platform for Future Communications Systems

    Get PDF
    Future mobile and wireless communications networks require flexible modem architectures with high performance. Efficient utilization of application specific flexibility is key to fulfill these requirements. For high throughput a single processor can not provide the necessary computational power. Hence multi-processor architectures become necessary. This paper presents a multi-processor platform based on a new dynamically reconfigurable application specific instruction set processor (dr-ASIP) for the application domain of channel decoding. Inherently parallel decoding tasks can be mapped onto individual processing nodes. The implied challenging inter-processor communication is efficiently handled by a Network-on-Chip (NoC) such that the throughput of each node is not degraded. The dr-ASIP features Viterbi and Log-MAP decoding for support of convolutional and turbo codes of more than 10 currently specified mobile and wireless standards. Furthermore, its flexibility allows for adaptation to future systems

    Run-time Energy Management for Mobiles

    Get PDF
    Due to limited energy resources, mobile computing requires an energy-efficient a rchitecture. The dynamic nature of a mobile environment demands an architecture that allows adapting to (quickly) changing conditions. The mobile has to adapt d ynamically to new circumstances in the best suitable manner. The hardware and so ftware architecture should be able to support such adaptability and minimize the energy consumption by making resource allocation decisions at run-time. To make these decisions effective, a tradeoff has to be made between computation , communication and initialization costs (both time and energy). This paper describes our approach to construct a model that supports taking such decisions

    Burst-by-Burst Adaptive Decision Feedback Equalised TCM, TTCM and BICM for H.263-Assisted Wireless Video Telephony

    No full text
    Decision Feedback Equaliser (DFE) aided wideband Burst-by-Burst (BbB) Adaptive Trellis Coded Modulation (TCM), Turbo Trellis Coded Modulation (TTCM) and Bit-Interleaved Coded Modulation (BICM) assisted H.263-based video transceivers are proposed and characterised in performance terms when communicating over the COST 207 Typical Urban wideband fading channel. Specifically, four different modulation modes, namely 4QAM, 8PSK, 16QAM and 64QAM are invoked and protected by the above-mentioned coded modulation schemes. The TTCM assisted scheme was found to provide the best video performance, although at the cost of the highest complexity. A range of lower-complexity arrangements will also be characterised. Finally, in order to confirm these findings in an important practical environment, we have also investigated the adaptive TTCM scheme in the CDMA-based Universal Mobile Telecommunications System's (UMTS) Terrestrial Radio Access (UTRA) scenario and the good performance of adaptive TTCM scheme recorded when communicating over the COST 207 channels was retained in the UTRA environment

    Turbo NOC: a framework for the design of Network On Chip based turbo decoder architectures

    Get PDF
    This work proposes a general framework for the design and simulation of network on chip based turbo decoder architectures. Several parameters in the design space are investigated, namely the network topology, the parallelism degree, the rate at which messages are sent by processing nodes over the network and the routing strategy. The main results of this analysis are: i) the most suited topologies to achieve high throughput with a limited complexity overhead are generalized de-Bruijn and generalized Kautz topologies; ii) depending on the throughput requirements different parallelism degrees, message injection rates and routing algorithms can be used to minimize the network area overhead.Comment: submitted to IEEE Trans. on Circuits and Systems I (submission date 27 may 2009
    corecore