1,902 research outputs found

    A roadmap to integrate astrocytes into Systems Neuroscience.

    Get PDF
    Systems neuroscience is still mainly a neuronal field, despite the plethora of evidence supporting the fact that astrocytes modulate local neural circuits, networks, and complex behaviors. In this article, we sought to identify which types of studies are necessary to establish whether astrocytes, beyond their well-documented homeostatic and metabolic functions, perform computations implementing mathematical algorithms that sub-serve coding and higher-brain functions. First, we reviewed Systems-like studies that include astrocytes in order to identify computational operations that these cells may perform, using Ca2+ transients as their encoding language. The analysis suggests that astrocytes may carry out canonical computations in a time scale of subseconds to seconds in sensory processing, neuromodulation, brain state, memory formation, fear, and complex homeostatic reflexes. Next, we propose a list of actions to gain insight into the outstanding question of which variables are encoded by such computations. The application of statistical analyses based on machine learning, such as dimensionality reduction and decoding in the context of complex behaviors, combined with connectomics of astrocyte-neuronal circuits, is, in our view, fundamental undertakings. We also discuss technical and analytical approaches to study neuronal and astrocytic populations simultaneously, and the inclusion of astrocytes in advanced modeling of neural circuits, as well as in theories currently under exploration such as predictive coding and energy-efficient coding. Clarifying the relationship between astrocytic Ca2+ and brain coding may represent a leap forward toward novel approaches in the study of astrocytes in health and disease

    I, NEURON: the neuron as the collective

    Get PDF
    Purpose – In the last half-century, individual sensory neurons have been bestowed with characteristics of the whole human being, such as behavior and its oft-presumed precursor, consciousness. This anthropomorphization is pervasive in the literature. It is also absurd, given what we know about neurons, and it needs to be abolished. This study aims to first understand how it happened, and hence why it persists. Design/methodology/approach – The peer-reviewed sensory-neurophysiology literature extends to hundreds (perhaps thousands) of papers. Here, more than 90 mainstream papers were scrutinized. Findings – Anthropomorphization arose because single neurons were cast as “observers” who “identify”, “categorize”, “recognize”, “distinguish” or “discriminate” the stimuli, using math-based algorithms that reduce (“decode”) the stimulus-evoked spike trains to the particular stimuli inferred to elicit them. Without “decoding”, there is supposedly no perception. However, “decoding” is both unnecessary and unconfirmed. The neuronal “observer” in fact consists of the laboratory staff and the greater society that supports them. In anthropomorphization, the neuron becomes the collective. Research limitations/implications – Anthropomorphization underlies the widespread application to neurons Information Theory and Signal Detection Theory, making both approaches incorrect. Practical implications – A great deal of time, money and effort has been wasted on anthropomorphic Reductionist approaches to understanding perception and consciousness. Those resources should be diverted into more-fruitful approaches. Originality/value – A long-overdue scrutiny of sensory-neuroscience literature reveals that anthropomorphization, a form of Reductionism that involves the presumption of single-neuron consciousness, has run amok in neuroscience. Consciousness is more likely to be an emergent property of the brain

    The spectro-contextual encoding and retrieval theory of episodic memory.

    Get PDF
    The spectral fingerprint hypothesis, which posits that different frequencies of oscillations underlie different cognitive operations, provides one account for how interactions between brain regions support perceptual and attentive processes (Siegel etal., 2012). Here, we explore and extend this idea to the domain of human episodic memory encoding and retrieval. Incorporating findings from the synaptic to cognitive levels of organization, we argue that spectrally precise cross-frequency coupling and phase-synchronization promote the formation of hippocampal-neocortical cell assemblies that form the basis for episodic memory. We suggest that both cell assembly firing patterns as well as the global pattern of brain oscillatory activity within hippocampal-neocortical networks represents the contents of a particular memory. Drawing upon the ideas of context reinstatement and multiple trace theory, we argue that memory retrieval is driven by internal and/or external factors which recreate these frequency-specific oscillatory patterns which occur during episodic encoding. These ideas are synthesized into a novel model of episodic memory (the spectro-contextual encoding and retrieval theory, or "SCERT") that provides several testable predictions for future research

    Neutral coding - A report based on an NRP work session

    Get PDF
    Neural coding by impulses and trains on single and multiple channels, and representation of information in nonimpulse carrier

    Word-decoding as a function of temporal processing in the visual system.

    Get PDF
    This study explored the relation between visual processing and word-decoding ability in a normal reading population. Forty participants were recruited at Arizona State University. Flicker fusion thresholds were assessed with an optical chopper using the method of limits by a 1-deg diameter green (543 nm) test field. Word decoding was measured using reading-word and nonsense-word decoding tests. A non-linguistic decoding measure was obtained using a computer program that consisted of Landolt C targets randomly presented in four cardinal orientations, at 3-radial distances from a focus point, for eight compass points, in a circular pattern. Participants responded by pressing the arrow key on the keyboard that matched the direction the target was facing. The results show a strong correlation between critical flicker fusion thresholds and scores on the reading-word, nonsense-word, and non-linguistic decoding measures. The data suggests that the functional elements of the visual system involved with temporal modulation and spatial processing may affect the ease with which people read
    • …
    corecore