291 research outputs found

    Learned Belief-Propagation Decoding with Simple Scaling and SNR Adaptation

    Get PDF
    We consider the weighted belief-propagation (WBP) decoder recently proposed by Nachmani et al. where different weights are introduced for each Tanner graph edge and optimized using machine learning techniques. Our focus is on simple-scaling models that use the same weights across certain edges to reduce the storage and computational burden. The main contribution is to show that simple scaling with few parameters often achieves the same gain as the full parameterization. Moreover, several training improvements for WBP are proposed. For example, it is shown that minimizing average binary cross-entropy is suboptimal in general in terms of bit error rate (BER) and a new "soft-BER" loss is proposed which can lead to better performance. We also investigate parameter adapter networks (PANs) that learn the relation between the signal-to-noise ratio and the WBP parameters. As an example, for the (32,16) Reed-Muller code with a highly redundant parity-check matrix, training a PAN with soft-BER loss gives near-maximum-likelihood performance assuming simple scaling with only three parameters.Comment: 5 pages, 5 figures, submitted to ISIT 201

    Mathematical Programming Decoding of Binary Linear Codes: Theory and Algorithms

    Full text link
    Mathematical programming is a branch of applied mathematics and has recently been used to derive new decoding approaches, challenging established but often heuristic algorithms based on iterative message passing. Concepts from mathematical programming used in the context of decoding include linear, integer, and nonlinear programming, network flows, notions of duality as well as matroid and polyhedral theory. This survey article reviews and categorizes decoding methods based on mathematical programming approaches for binary linear codes over binary-input memoryless symmetric channels.Comment: 17 pages, submitted to the IEEE Transactions on Information Theory. Published July 201

    Fault-tolerant gates via homological product codes

    Get PDF
    A method for the implementation of a universal set of fault-tolerant logical gates is presented using homological product codes. In particular, it is shown that one can fault-tolerantly map between different encoded representations of a given logical state, enabling the application of different classes of transversal gates belonging to the underlying quantum codes. This allows for the circumvention of no-go results pertaining to universal sets of transversal gates and provides a general scheme for fault-tolerant computation while keeping the stabilizer generators of the code sparse.Comment: 11 pages, 3 figures. v2 (published version): quantumarticle documentclass, expanded discussion on the conditions for a fault tolerance threshol

    Numerical Techniques for Finding the Distances of Quantum Codes

    Get PDF
    We survey the existing techniques for calculating code distances of classical codes and apply these techniques to generic quantum codes. For classical and quantum LDPC codes, we also present a new linked-cluster technique. It reduces complexity exponent of all existing deterministic techniques designed for codes with small relative distances (which include all known families of quantum LDPC codes), and also surpasses the probabilistic technique for sufficiently high code rates.Comment: 5 pages, 1 figure, to appear in Proceedings of ISIT 2014 - IEEE International Symposium on Information Theory, Honolul
    • …
    corecore