850 research outputs found

    Adaptive Cut Generation Algorithm for Improved Linear Programming Decoding of Binary Linear Codes

    Full text link
    Linear programming (LP) decoding approximates maximum-likelihood (ML) decoding of a linear block code by relaxing the equivalent ML integer programming (IP) problem into a more easily solved LP problem. The LP problem is defined by a set of box constraints together with a set of linear inequalities called "parity inequalities" that are derived from the constraints represented by the rows of a parity-check matrix of the code and can be added iteratively and adaptively. In this paper, we first derive a new necessary condition and a new sufficient condition for a violated parity inequality constraint, or "cut," at a point in the unit hypercube. Then, we propose a new and effective algorithm to generate parity inequalities derived from certain additional redundant parity check (RPC) constraints that can eliminate pseudocodewords produced by the LP decoder, often significantly improving the decoder error-rate performance. The cut-generating algorithm is based upon a specific transformation of an initial parity-check matrix of the linear block code. We also design two variations of the proposed decoder to make it more efficient when it is combined with the new cut-generating algorithm. Simulation results for several low-density parity-check (LDPC) codes demonstrate that the proposed decoding algorithms significantly narrow the performance gap between LP decoding and ML decoding

    A Family of Erasure Correcting Codes with Low Repair Bandwidth and Low Repair Complexity

    Get PDF
    We present the construction of a new family of erasure correcting codes for distributed storage that yield low repair bandwidth and low repair complexity. The construction is based on two classes of parity symbols. The primary goal of the first class of symbols is to provide good erasure correcting capability, while the second class facilitates node repair, reducing the repair bandwidth and the repair complexity. We compare the proposed codes with other codes proposed in the literature.Comment: Accepted, will appear in the proceedings of Globecom 2015 (Selected Areas in Communications: Data Storage

    A chromatic transient visual evoked potential based encoding/decoding approach for brain-computer interface

    Get PDF
    This paper presents a new encoding/decoding approach to brain-computer interface (BCI) based on chromatic transient visual evoked potential (CTVEP). The proposed CTVEP-based encoding/decoding approach is designed to provide a safer and more comfortable stimulation method than the conventional VEP-based stimulation methods for BCI without loss of efficiency. For this purpose, low-frequency isoluminant chromatic stimuli are time-encoded to serve as different input commands for BCI control, and the superior comfortableness of the proposed stimulation method is validated by a survey. A combination of diversified signal processing techniques are further employed to decode the information from CTVEP. Based on experimental results, a properly designed configuration of the CTVEP-based stimulation method and a tailored signal processing framework are developed. It is demonstrated that high performance (at information transfer rate: 58.0 bits/min, accuracy: 94.9%, false alarm rate: 1.3%) for BCI can be achieved by means of the CTVEP-based encoding/decoding approach. It turns out that to achieve such good performance, only simple signal processing algorithms with very low computational complexity are required, which makes the method suitable for the development of a practical BCI system. A preliminary prototype of such a system has been implemented with demonstrated applicability. © 2011 IEEE.published_or_final_versio

    Iterative Joint Channel Estimation and Symbol Detection for Multi-User MIMO OFDM

    No full text
    Multiple-Input-Multiple-Output (MIMO) Orthogonal Frequency Division Multiplexing (OFDM) systems have recently attracted substantial research interest. However, compared to Single-Input-Single-Output (SISO) systems, channel estimation in the MIMO scenario becomes more challenging, owing to the increased number of independent transmitter-receiver links to be estimated. In the context of the Bell LAyered Space-Time architecture (BLAST) or Space Division Multiple Access (SDMA) multi-user MIMO OFDM literature, no channel estimation technique allows the number of users to be higher than the number of receiver antennas, which is often referred to as an “overloaded” scenario. In this contribution we propose a new Genetic Algorithm (GA) assisted iterative joint channel estimation and multiuser detection approach for MIMO SDMA-OFDM systems, which exhibits a robust performance in the above-mentioned overloaded scenario. Furthermore, GA-aided Multi-User Detection (MUD) techniques found in the literature can only provide a hard-decision output, while the proposed GA is capable of providing “soft” outputs, hence achieving an improved performance with the aid of channel decoders. Finally, a range of simulation results are provided to demonstrate the superiority of the proposed scheme
    • …
    corecore