92,151 research outputs found

    Low-Complexity LP Decoding of Nonbinary Linear Codes

    Full text link
    Linear Programming (LP) decoding of Low-Density Parity-Check (LDPC) codes has attracted much attention in the research community in the past few years. LP decoding has been derived for binary and nonbinary linear codes. However, the most important problem with LP decoding for both binary and nonbinary linear codes is that the complexity of standard LP solvers such as the simplex algorithm remains prohibitively large for codes of moderate to large block length. To address this problem, two low-complexity LP (LCLP) decoding algorithms for binary linear codes have been proposed by Vontobel and Koetter, henceforth called the basic LCLP decoding algorithm and the subgradient LCLP decoding algorithm. In this paper, we generalize these LCLP decoding algorithms to nonbinary linear codes. The computational complexity per iteration of the proposed nonbinary LCLP decoding algorithms scales linearly with the block length of the code. A modified BCJR algorithm for efficient check-node calculations in the nonbinary basic LCLP decoding algorithm is also proposed, which has complexity linear in the check node degree. Several simulation results are presented for nonbinary LDPC codes defined over Z_4, GF(4), and GF(8) using quaternary phase-shift keying and 8-phase-shift keying, respectively, over the AWGN channel. It is shown that for some group-structured LDPC codes, the error-correcting performance of the nonbinary LCLP decoding algorithms is similar to or better than that of the min-sum decoding algorithm.Comment: To appear in IEEE Transactions on Communications, 201

    Decoding the Golay code with Venn diagrams

    Get PDF
    A decoding algorithm, based on Venn diagrams, for decoding the [23, 12, 7] Golay code is presented. The decoding algorithm is based on the design properties of the parity sets of the code. As for other decoding algorithms for the Golay code, decoding can be easily done by hand

    On Decoding Schemes for the MDPC-McEliece Cryptosystem

    Get PDF
    Recently, it has been shown how McEliece public-key cryptosystems based on moderate-density parity-check (MDPC) codes allow for very compact keys compared to variants based on other code families. In this paper, classical (iterative) decoding schemes for MPDC codes are considered. The algorithms are analyzed with respect to their error-correction capability as well as their resilience against a recently proposed reaction-based key-recovery attack on a variant of the MDPC-McEliece cryptosystem by Guo, Johansson and Stankovski (GJS). New message-passing decoding algorithms are presented and analyzed. Two proposed decoding algorithms have an improved error-correction performance compared to existing hard-decision decoding schemes and are resilient against the GJS reaction-based attack for an appropriate choice of the algorithm's parameters. Finally, a modified belief propagation decoding algorithm that is resilient against the GJS reaction-based attack is presented
    • …
    corecore