45 research outputs found

    Dimensionality Reduction of Hyperspectral Imagery Using Random Projections

    Get PDF
    Hyperspectral imagery is often associated with high storage and transmission costs. Dimensionality reduction aims to reduce the time and space complexity of hyperspectral imagery by projecting data into a low-dimensional space such that all the important information in the data is preserved. Dimensionality-reduction methods based on transforms are widely used and give a data-dependent representation that is unfortunately costly to compute. Recently, there has been a growing interest in data-independent representations for dimensionality reduction; of particular prominence are random projections which are attractive due to their computational efficiency and simplicity of implementation. This dissertation concentrates on exploring the realm of computationally fast and efficient random projections by considering projections based on a random Hadamard matrix. These Hadamard-based projections are offered as an alternative to more widely used random projections based on dense Gaussian matrices. Such Hadamard matrices are then coupled with a fast singular value decomposition in order to implement a two-stage dimensionality reduction that marries the computational benefits of the data-independent random projection to the structure-capturing capability of the data-dependent singular value transform. Finally, random projections are applied in conjunction with nonnegative least squares to provide a computationally lightweight methodology for the well-known spectral-unmixing problem. Overall, it is seen that random projections offer a computationally efficient framework for dimensionality reduction that permits hyperspectral-analysis tasks such as unmixing and classification to be conducted in a lower-dimensional space without sacrificing analysis performance while reducing computational costs significantly

    COMPRESSIVE SENSING APPROACH TO HYPERSPECTRAL IMAGE COMPRESSION

    Get PDF
    Hyperspectral image (HSI) processing is one of the key processes in satellite imaging applications. Hyperspectral imaging spectrometers collect huge volumes of data since the image is captured across different wavelength bands in the electromagnetic spectrum. As a result, compression of hyperspectral images is one of the active area in research community from many years. The research work proposes a new compressive sensing based approach for the compression of hyperspectral images called SHSIR (Sparsification of hyperspectral image and reconstruction). The algorithm computes the coefficients of fractional abundance map in matrix setup, which is used to reconstruct the hyperspectral image. To optimize the problem with non-smooth term existence along with large dimensionality, Bregman iterations method of multipliers is used, which converts the difficult optimization problem into simpler cyclic sequence problem. Experimental result demonstrates the supremacy of the proposed method over other existing techniques

    Scalable Low-rank Matrix and Tensor Decomposition on Graphs

    Get PDF
    In many signal processing, machine learning and computer vision applications, one often has to deal with high dimensional and big datasets such as images, videos, web content, etc. The data can come in various forms, such as univariate or multivariate time series, matrices or high dimensional tensors. The goal of the data mining community is to reveal the hidden linear or non-linear structures in the datasets. Over the past couple of decades matrix factorization, owing to its intrinsic association with dimensionality reduction has been adopted as one of the key methods in this context. One can either use a single linear subspace to approximate the data (the standard Principal Component Analysis (PCA) approach) or a union of low dimensional subspaces where each data class belongs to a different subspace. In many cases, however, the low dimensional data follows some additional structure. Knowledge of such structure is beneficial, as we can use it to enhance the representativity of our models by adding structured priors. A nowadays standard way to represent pairwise affinity between objects is by using graphs. The introduction of graph-based priors to enhance matrix factorization models has recently brought them back to the highest attention of the data mining community. Representation of a signal on a graph is well motivated by the emerging field of signal processing on graphs, based on notions of spectral graph theory. The underlying assumption is that high-dimensional data samples lie on or close to a smooth low-dimensional manifold. Interestingly, the underlying manifold can be represented by its discrete proxy, i.e. a graph. A primary limitation of the state-of-the-art low-rank approximation methods is that they do not generalize for the case of non-linear low-rank structures. Furthermore, the standard low-rank extraction methods for many applications, such as low-rank and sparse decomposition, are computationally cumbersome. We argue, that for many machine learning and signal processing applications involving big data, an approximate low-rank recovery suffices. Thus, in this thesis, we present solutions to the above two limitations by presenting a new framework for scalable but approximate low-rank extraction which exploits the hidden structure in the data using the notion of graphs. First, we present a novel signal model, called `Multilinear low-rank tensors on graphs (MLRTG)' which states that a tensor can be encoded as a multilinear combination of the low-frequency graph eigenvectors, where the graphs are constructed along the various modes of the tensor. Since the graph eigenvectors have the interpretation of \textit{non-linear} embedding of a dataset on the low-dimensional manifold, we propose a method called `Graph Multilinear SVD (GMLSVD)' to recover PCA based linear subspaces from these eigenvectors. Finally, we propose a plethora of highly scalable matrix and tensor based problems for low-rank extraction which implicitly or explicitly make use of the GMLSVD framework. The core idea is to replace the expensive iterative SVD operations by updating the linear subspaces from the fixed non-linear ones via low-cost operations. We present applications in low-rank and sparse decomposition and clustering of the low-rank features to evaluate all the proposed methods. Our theoretical analysis shows that the approximation error of the proposed framework depends on the spectral properties of the graph Laplacian

    Advanced Optical Technologies in Food Quality and Waste Management

    Get PDF
    Food waste is a global problem caused in large part by premature food spoilage. Seafood is especially prone to food waste because it spoils easily. Of the annual 4.7 billion pounds of seafood destined for U.S. markets between 2009 and 2013, 40 to 47 percent ended up as waste. This problem is due in large part to a lack of available technologies to enable rapid, accurate, and reliable valorization of food products from boat or farm to table. Fortunately, recent advancements in spectral sensing technologies and spectroscopic analyses show promise for addressing this problem. Not only could these advancements help to solve hunger issues in impoverished regions of the globe, but they could also benefit the average consumer by enabling intelligent pricing of food products based on projected shelf life. Additional technologies that enforce trust and compliance (e.g., blockchain) could further serve to prevent food fraud by maintaining records of spoilage conditions and other quality validation at all points along the food supply chain and provide improved transparency as regards contract performance and attribution of liability. In this chapter we discuss technologies that have enabled the development of hand-held spectroscopic devices for detecting food spoilage. We also discuss some of the analytical methods used to classify and quantify spoilage based on spectral measurements

    Hyperspectral Image Analysis through Unsupervised Deep Learning

    Get PDF
    Hyperspectral image (HSI) analysis has become an active research area in computer vision field with a wide range of applications. However, in order to yield better recognition and analysis results, we need to address two challenging issues of HSI, i.e., the existence of mixed pixels and its significantly low spatial resolution (LR). In this dissertation, spectral unmixing (SU) and hyperspectral image super-resolution (HSI-SR) approaches are developed to address these two issues with advanced deep learning models in an unsupervised fashion. A specific application, anomaly detection, is also studied, to show the importance of SU.Although deep learning has achieved the state-of-the-art performance on supervised problems, its practice on unsupervised problems has not been fully developed. To address the problem of SU, an untied denoising autoencoder is proposed to decompose the HSI into endmembers and abundances with non-negative and abundance sum-to-one constraints. The denoising capacity is incorporated into the network with a sparsity constraint to boost the performance of endmember extraction and abundance estimation.Moreover, the first attempt is made to solve the problem of HSI-SR using an unsupervised encoder-decoder architecture by fusing the LR HSI with the high-resolution multispectral image (MSI). The architecture is composed of two encoder-decoder networks, coupled through a shared decoder, to preserve the rich spectral information from the HSI network. It encourages the representations from both modalities to follow a sparse Dirichlet distribution which naturally incorporates the two physical constraints of HSI and MSI. And the angular difference between representations are minimized to reduce the spectral distortion.Finally, a novel detection algorithm is proposed through spectral unmixing and dictionary based low-rank decomposition, where the dictionary is constructed with mean-shift clustering and the coefficients of the dictionary is encouraged to be low-rank. Experimental evaluations show significant improvement on the performance of anomaly detection conducted on the abundances (through SU).The effectiveness of the proposed approaches has been evaluated thoroughly by extensive experiments, to achieve the state-of-the-art results

    Artificial Intelligence in Classical and Quantum Photonics

    Get PDF
    The last decades saw a huge rise of artificial intelligence (AI) as a powerful tool to boost industrial and scientific research in a broad range of fields. AI and photonics are developing a promising two-way synergy: on the one hand, AI approaches can be used to control a number of complex linear and nonlinear photonic processes, both in the classical and quantum regimes; on the other hand, photonics can pave the way for a new class of platforms to accelerate AI-tasks. This review provides the reader with the fundamental notions of machine learning (ML) and neural networks (NNs) and presents the main AI applications in the fields of spectroscopy and chemometrics, computational imaging (CI), wavefront shaping and quantum optics. The review concludes with an overview of future developments of the promising synergy between AI and photonics

    Design of large polyphase filters in the Quadratic Residue Number System

    Full text link
    corecore