909 research outputs found

    Decoder-driven mode decision in a block-based distributed video codec

    Get PDF
    Distributed Video Coding (DVC) is a video coding paradigm in which the computational complexity is shifted from the encoder to the decoder. DVC is based on information theoretic results suggesting that, under ideal conditions, the same rate-distortion performance can be achieved as for traditional video codecs. In practice however, there is still a significant performance gap between the two coding architectures. One of the main reasons for this gap is the lack of multiple coding modes in current DVC solutions. In this paper, we propose a block-based distributed video codec that supports three coding modes: Wyner-Ziv, skip, and intra. The mode decision process is entirely decoder-driven. Skip blocks are selected based on the estimated accuracy of the side information. The choice between intra and Wyner-Ziv coding modes is made on a rate-distortion basis, by selecting the coding mode with the lowest rate while assuring equal distortion for both modes. Experimental results illustrate that the proposed block-based architecture has some advantages over classical bitplane-based approaches. Introducing skip and intra coded blocks yields average bitrate gains of up to 33.7% over our basic configuration supporting Wyner-Ziv mode only, and up to 29.7% over the reference bitplane-based DISCOVER codec

    Distributed video coding for wireless video sensor networks: a review of the state-of-the-art architectures

    Get PDF
    Distributed video coding (DVC) is a relatively new video coding architecture originated from two fundamental theorems namely, Slepian–Wolf and Wyner–Ziv. Recent research developments have made DVC attractive for applications in the emerging domain of wireless video sensor networks (WVSNs). This paper reviews the state-of-the-art DVC architectures with a focus on understanding their opportunities and gaps in addressing the operational requirements and application needs of WVSNs

    Adaptive mode decision with residual motion compensation for distributed video coding

    Get PDF
    Distributed video coding (DVC) is a coding paradigm that entails low complexity encoding by exploiting the source statistics at the decoder. To improve the DVC coding efficiency, this paper presents a novel adaptive technique for mode decision to control and take advantage of skip mode and intra mode in DVC initially proposed by Luong et al. in 2013. The adaptive mode decision (AMD) is not only based on quality of key frames but also the rate of Wyner-Ziv (WZ) frames. To improve noise distribution estimation for a more accurate mode decision, a residual motion compensation is proposed to estimate a current noise residue based on a previously decoded frame. The experimental results, integrating AMD in two efficient DVC codecs, show that the proposed AMD DVC significantly improves the rate distortion performance without increasing the encoding complexity. For a GOP size of 2 on the set of six test sequences, the average (Bjontegaard) bitrate saving of the proposed codec is 35.5. on WZ frames compared with the DISCOVER codec. This saving is mainly achieved by AMD

    Embedding a block-based intra mode in frame-based pixel domain wyner-ziv video coding

    Get PDF
    Distributed source coding principles have been recently applied to video coding in order to achieve a flexible distribution of the complexity burden between the encoder and the decoder. In this paper we elaborate on a pixel based Wyner-Ziv video codec that shifts all the complexity of the motion estimation phase to the decoder, thus achieving light encoding. We observe that the correlation noise statistics describing the relationship between the frame to be encoded and the side information available at the decoder is not spatially stationary. For this reason we introduce a mode decision scheme either at the encoder or at the decoder in such a way that when the estimated correlation is weak we opt for intra coding on a block-by-block basis. Moreover we discuss the effect of using a side information computed either from lossless or from quantized frames.

    Improved compression performance for distributed video coding

    Get PDF

    Distributed Video Coding: Iterative Improvements

    Get PDF

    Hierarchical motion estimation for side information creation in Wyner-Ziv video coding

    Full text link
    Recently, several video coding solutions based on the distributed source coding paradigm have appeared in the literature. Among them, Wyner-Ziv video coding schemes enable to achieve a flexible distribution of the computational complexity between the encoder and decoder, promising to fulfill requirements of emerging applications such as visual sensor networks and wireless surveillance. To achieve a performance comparable to the predictive video coding solutions, it is necessary to increase the quality of the side information, this means the estimation of the original frame created at the decoder. In this paper, a hierarchical motion estimation (HME) technique using different scales and increasingly smaller block sizes is proposed to generate a more reliable estimation of the motion field. The HME technique is integrated in a well known motion compensated frame interpolation framework responsible for the creation of the side information in a Wyner-Ziv video decoder. The proposed technique enables to achieve improvements in the rate-distortion (RD) performance up to 7 dB when compared to H.263+ Intra and 3 dB when compared to H.264/AVC Intra

    A low-complexity and efficient encoder rate control solution for distributed residual video coding.

    Get PDF
    Existing encoder rate control (ERC) solutions have two technical limitations that prevent them from being widely used in real-world applications. One is that encoder side information (ESI) is required to be generated which increases the complexity at the encoder. The other is that rate estimation is performed at bit plane level which incurs computation overheads and latency when many bit planes exist. To achieve a low-complexity encoder, we propose a new ERC solution that combines an efficient encoder block mode decision (EBMD) for the distributed residual video coding (DRVC). The main contributions of this paper are as follows: 1) ESI is not required as our ERC is based on the analysis of the statistical characteristics of the decoder side information (DSI); 2) a simple EBMD is introduced which only employs the values of residual pixels at the encoder to classify blocks into Intra mode, Skip mode, and WZ mode; 3) an ERC solution using pseudo-random sequence scrambling is proposed to estimate rates for all WZ blocks at frame level instead of at bit plane level, i.e., only one rate is estimated; and 4) a quantization-index estimation algorithm (QIEA) is proposed to solve the problem of rate underestimation. The simulation results show that the proposed solution is not only low complex but also efficient in both the block mode decision and the rate estimation. Also, as compared to DISCOVER system and the state-of-the-art ERC solution, our solution demonstrates a competitive rate-distortion(RD)performance. Due to maintain the low-complexity nature of the encoder and have good RD performance, we believe that our ERC solution is promising in practice
    corecore