1,413 research outputs found

    Differential modulation for two-way wireless communications: a perspective of differential network coding at the physical layer

    Get PDF
    This work considers two-way relay channels (TWRC), where two terminals transmit simultaneously to each other with the help of a relay node. For single antenna systems, we propose several new transmission schemes for both amplify-and-forward (AF) protocol and decode-and-forward (DF) protocol where the channel state information is not required. These new schemes are the counterpart of the traditional noncoherent detection or differential detection in point-to-point communications. Differential modulation design for TWRC is challenging because the received signal is a mixture of the signals from both source terminals. We derive maximum likelihood (ML) detectors for both AF and DF protocols, where the latter can be considered as performing differential network coding at the physical layer. As the exact ML detector is prohibitively complex, we propose several suboptimal alternatives including decision feedback detectors and prediction-based detectors. All these strategies work well as evidenced by the simulation results. The proposed protocols are especially useful when the required average data rate is high. In addition, we extend the protocols to the multiple-antenna case and provide the design criterion of the differential unitary space time modulation (DUSTM) for TWRC

    Cyclic Distributed Space–Time Codes for Wireless Relay Networks With No Channel Information

    Get PDF
    In this paper, we present a coding strategy for half duplex wireless relay networks, where we assume no channel knowledge at any of the transmitter, receiver, or relays. The coding scheme uses distributed space–time coding, that is, the relay nodes cooperate to encode the transmitted signal so that the receiver senses a space–time codeword. It is inspired by noncoherent differential techniques. The proposed strategy is available for any number of relays nodes. It is analyzed, and shown to yield a diversity linear in the number of relays. We also study the resistance of the scheme to relay node failures, and show that a network with R relay nodes and d of them down behaves, as far as diversity is concerned, as a network with R-d nodes. Finally, our construction can be easily generalized to the case where the transmitter and receiver nodes have several antennas

    Dispensing with channel estimation: differentially modulated cooperative wireless communications

    No full text
    As a benefit of bypassing the potentially excessive complexity and yet inaccurate channel estimation, differentially encoded modulation in conjunction with low-complexity noncoherent detection constitutes a viable candidate for user-cooperative systems, where estimating all the links by the relays is unrealistic. In order to stimulate further research on differentially modulated cooperative systems, a number of fundamental challenges encountered in their practical implementations are addressed, including the time-variant-channel-induced performance erosion, flexible cooperative protocol designs, resource allocation as well as its high-spectral-efficiency transceiver design. Our investigations demonstrate the quantitative benefits of cooperative wireless networks both from a pure capacity perspective as well as from a practical system design perspective

    Selective Combining for Hybrid Cooperative Networks

    Full text link
    In this study, we consider the selective combining in hybrid cooperative networks (SCHCNs scheme) with one source node, one destination node and NN relay nodes. In the SCHCN scheme, each relay first adaptively chooses between amplify-and-forward protocol and decode-and-forward protocol on a per frame basis by examining the error-detecting code result, and NcN_c (1NcN1\leq N_c \leq N) relays will be selected to forward their received signals to the destination. We first develop a signal-to-noise ratio (SNR) threshold-based frame error rate (FER) approximation model. Then, the theoretical FER expressions for the SCHCN scheme are derived by utilizing the proposed SNR threshold-based FER approximation model. The analytical FER expressions are validated through simulation results.Comment: 27 pages, 8 figures, IET Communications, 201

    A Comparative Study of Relaying Schemes with Decode-and-Forward over Nakagami-m Fading Channels

    Full text link
    Utilizing relaying techniques to improve performance of wireless systems is a promising avenue. However, it is crucial to understand what type of relaying schemes should be used for achieving different performance objectives under realistic fading conditions. In this paper, we present a general framework for modelling and evaluating the performance of relaying schemes based on the decode-and-forward (DF) protocol over independent and not necessarily identically distributed (INID) Nakagami-m fading channels. In particular, we present closed-form expressions for the statistics of the instantaneous output signal-to-noise ratio of four significant relaying schemes with DF; two based on repetitive transmission and the other two based on relay selection (RS). These expressions are then used to obtain closed-form expressions for the outage probability and the average symbol error probability for several modulations of all considered relaying schemes over INID Nakagami-m fading. Importantly, it is shown that when the channel state information for RS is perfect, RS-based transmission schemes always outperform repetitive ones. Furthermore, when the direct link between the source and the destination nodes is sufficiently strong, relaying may not result in any gains and in this case it should be switched-off.Comment: Submitted to Journal of Computer Systems, Networks, and Communication

    A coding scheme for wireless networks with multiple antenna nodes and no channel information

    Get PDF
    In this paper, we present a coding strategy for wireless relay networks where the relay nodes are small devices with few resources, while the source and sink are equipped with multiple antennas to increase the transmission rate. We assume no channel knowledge at all, and the receiver decodes knowing none of the channel paths. This coding scheme uses distributed space-time coding techniques and is inspired by noncoherent differential space-time coding. It is shown to yield a diversity linear in the minimum number of transmit/receive antennas times the number of relays
    corecore