2,311 research outputs found

    A conceptual architecture for interactive educational multimedia

    Get PDF
    Learning is more than knowledge acquisition; it often involves the active participation of the learner in a variety of knowledge- and skills-based learning and training activities. Interactive multimedia technology can support the variety of interaction channels and languages required to facilitate interactive learning and teaching. A conceptual architecture for interactive educational multimedia can support the development of such multimedia systems. Such an architecture needs to embed multimedia technology into a coherent educational context. A framework based on an integrated interaction model is needed to capture learning and training activities in an online setting from an educational perspective, to describe them in the human-computer context, and to integrate them with mechanisms and principles of multimedia interaction

    Active architecture for pervasive contextual services

    Get PDF
    Pervasive services may be defined as services that are available to any client (anytime, anywhere). Here we focus on the software and network infrastructure required to support pervasive contextual services operating over a wide area. One of the key requirements is a matching service capable of assimilating and filtering information from various sources and determining matches relevant to those services. We consider some of the challenges in engineering a globally distributed matching service that is scalable, manageable, and able to evolve incrementally as usage patterns, data formats, services, network topologies and deployment technologies change. We outline an approach based on the use of a peer-to-peer architecture to distribute user events and data, and to support the deployment and evolution of the infrastructure itself

    On the Integration of Skilled Robot Motions for Productivity in Manufacturing

    Get PDF
    Robots used in manufacturing today are tailored to their tasks by system integration based on expert knowledge concerning both production and machine control. For upcoming new generations of even more flexible robot solutions, in applications such as dexterous assembly, the robot setup and programming gets even more challenging. Reuse of solutions in terms of parameters, controls, process tuning, and of software modules in general then gets increasingly important. There has been valuable progress within reuse of automation solutions when machines comply with standards and behave according to nominal models. However, more flexible robots with sensor-based manipulation skills and congnitive functions for human inteaction are far too complex to manage, and solutions are rarely reusable since knowledge is either implicit in imperative software or not captured in machine readable form. We propose techniques that build on existing knowledge by converting structured data into an RDF-based knowledge base. By enhancements of industrial control systems and available engineering tools, such knowledge can be gradually extended as part of the interaction during the definition of the robot task

    Dataplane Specialization for High-performance OpenFlow Software Switching

    Get PDF
    OpenFlow is an amazingly expressive dataplane program- ming language, but this expressiveness comes at a severe performance price as switches must do excessive packet clas- sification in the fast path. The prevalent OpenFlow software switch architecture is therefore built on flow caching, but this imposes intricate limitations on the workloads that can be supported efficiently and may even open the door to mali- cious cache overflow attacks. In this paper we argue that in- stead of enforcing the same universal flow cache semantics to all OpenFlow applications and optimize for the common case, a switch should rather automatically specialize its dat- aplane piecemeal with respect to the configured workload. We introduce ES WITCH , a novel switch architecture that uses on-the-fly template-based code generation to compile any OpenFlow pipeline into efficient machine code, which can then be readily used as fast path. We present a proof- of-concept prototype and we demonstrate on illustrative use cases that ES WITCH yields a simpler architecture, superior packet processing speed, improved latency and CPU scala- bility, and predictable performance. Our prototype can eas- ily scale beyond 100 Gbps on a single Intel blade even with complex OpenFlow pipelines

    Implementing OBDA for an end-user query answering service on an educational ontology

    Get PDF
    In the age where productivity of society is no longer defined by the amount of information generated, but from the quality and assertiveness that a set of data may potentially hold, the right questions to do depends on the semantic awareness capability that an information system could evolve into. To address this challenge, in the last decade, exhaustive research has been done in the Ontology Based Data Access (OBDA) paradigm. A conspectus of the most promising technologies with data integration capabilities and the foundations where they rely are documented in this memory as a point of reference for choosing tools that supports the incorporation of a conceptual model under a OBDA method. The present study provides a practical approach for implementing an ontology based data access service, to educational context users of a Learning Analytics initiative, by means of allowing them to formulate intuitive enquiries with a familiar domain terminology on top of a Learning Management System. The ontology used was completely transformed to semantic linked data standards and some data mappings for testing were included. Semantic Linked Data technologies exposed in this document may exert modernization to environments in which object oriented and relational paradigms may propagate heterogeneous and contradictory requirements. Finally, to validate the implementation, a set of queries were constructed emulating the most relevant dynamics of the model regarding the dataset nature
    corecore