1,421 research outputs found

    Exploring Business Process Deviance with Declare

    Get PDF
    See töö tutvustab äriprotsessi hälbe kaevandust, mis kuulub protsessi\n\rkaevandamise gruppi ja annab ülevaate mitme hälbivaga kaevandamise lähenemisviisidest.\n\rKeskendutakse ka hälbiva kaevandamise kasutamise diskrimineerivatele mustritele, mis kuulub kontserni järjestikumustrite kaevandustehnoloogiatega samasse gruppi. Selles töös vaadeldakse uute diskrimineerivate mustrite kaevandamise algoritmi, mis põhineb Declare keelel. Rakendati plug-in lähenemisviisi protsessi kaevandamise näitajaga ProMile. Kirjeldatakse kogu protsessi kuni klassifitseerimiseni. Töö lõpus hinnati algoritmi tõhusust ja eksperimente erinevates variatsioonides.This thesis introduces business process deviance mining, which belongs to the group\n\rof process mining, and gives an overview on multiple deviance mining approaches. After that\n\rwe focus on deviance mining using discriminative patterns, which belongs to the group of\n\rsequential patterns mining techniques. In this work we propose new discriminative pattern\n\rmining algorithm based on the Declare language. We implemented the approach as a plug-in\n\rof the Process Mining tool ProM. We describe the whole proposed approach from the labelling\n\rof the event logs until building the classifier and classifying the test logs. In the end of the\n\rthesis we evaluate the effectiveness of our proposed algorithm on variety of experiments on\n\revent logs

    Advanced Methods in Business Process Deviance Mining

    Get PDF
    Äriprotsessi hälve on nähtus, kus alamhulk äriprotsessi täitmistest erinevad soovitud või ettenähtud tulemusest, kas positiivses või negatiivses mõttes. Äriprotsesside hälbega täitmised sisaldavad endas täitmisi, mis ei vasta ettekirjutatud reeglitele või täitmised, mis on jäävad alla või ületavad tulemuslikkuse eesmärke. Hälbekaevandus tegeleb hälbe põhjuste otsimisega, analüüsides selleks äriprotsesside sündmuste logisid.Antud töös lähenetakse protsessihälvete põhjuste otsimise ülesandele, esmalt kasutades järjestikkudel põhinevaid või deklaratiivseid mustreid ning nende kombinatsiooni. Hälbekaevandusest saadud põhjendusi saab parendada, kasutades sündmustes ja sündmusjälgede atribuutides sisalduvaid andmelaste. Andmelastidest konstrueeritakse uued tunnused nii otsekoheselt atribuute ekstraheerides ja agregeerides kui ka andmeteadlike deklaratiivseid piiranguid kasutades. Hälbeid iseloomustavad põhjendused ekstraheeritakse kasutades kaudset ja otsest meetodit reeglite induktsiooniks. Kasutades sünteetilisi ja reaalseid logisid, hinnatakse erinevaid tunnuseid ja tulemuseks saadud otsustusreegleid nii nende võimekuses täpselt eristada hälbega ja hälbeta protsesside täitmiseid kui ka kasutajatele antud lõpptulemustes.Business process deviance refers to the phenomenon whereby a subset of the executions of a business process deviate, in a negative or positive way, with respect to its expected or desirable outcomes. Deviant executions of a business process include those that violate compliance rules, or executions that undershoot or exceed performance targets. Deviance mining is concerned with uncovering the reasons for deviant executions by analyzing business process event logs. In this thesis, the problem of explaining deviations in business processes is first investigated by using features based on sequential and declarative patterns, and a combination of them. The explanations are further improved by leveraging the data payload of events and traces in event logs through features based on pure data attribute values and data-aware declare constraints. The explanations characterizing the deviances are then extracted by direct and indirect methods for rule induction. Using synthetic and real-life logs from multiple domains, a range of feature types and different forms of decision rules are evaluated in terms of their ability to accurately discriminate between non-deviant and deviant executions of a process as well as in terms of the final outcome returned to the users

    The application of process mining to care pathway analysis in the NHS

    Get PDF
    Background: Prostate cancer is the most common cancer in men in the UK and the sixth-fastest increasing cancer in males. Within England survival rates are improving, however, these are comparatively poorer than other countries. Currently, information available on outcomes of care is scant and there is an urgent need for techniques to improve healthcare systems and processes. Aims: To provide prostate cancer pathway analysis, by applying concepts of process mining and visualisation and comparing the performance metrics against the standard pathway laid out by national guidelines. Methods: A systematic review was conducted to see how process mining has been used in healthcare. Appropriate datasets for prostate cancer were identified within Imperial College Healthcare NHS Trust London. A process model was constructed by linking and transforming cohort data from six distinct database sources. The cohort dataset was filtered to include patients who had a PSA from 2010-2015, and validated by comparing the medical patient records against a Case-note audit. Process mining techniques were applied to the data to analyse performance and conformance of the prostate cancer pathway metrics to national guideline metrics. These techniques were evaluated with stakeholders to ascertain its impact on user experience. Results: Case note audit revealed 90% match against patients found in medical records. Application of process mining techniques showed massive heterogeneity as compared to the homogenous path laid out by national guidelines. This also gave insight into bottlenecks and deviations in the pathway. Evaluation with stakeholders showed that the visualisation and technology was well accepted, high quality and recommended to be used in healthcare decision making. Conclusion: Process mining is a promising technique used to give insight into complex and flexible healthcare processes. It can map the patient journey at a local level and audit it against explicit standards of good clinical practice, which will enable us to intervene at the individual and system level to improve care.Open Acces

    Data-Aware Declarative Process Mining with SAT

    Get PDF
    Process Mining is a family of techniques for analyzing business process execution data recorded in event logs. Process models can be obtained as output of automated process discovery techniques or can be used as input of techniques for conformance checking or model enhancement. In Declarative Process Mining, process models are represented as sets of temporal constraints (instead of procedural descriptions where all control-flow details are explicitly modeled). An open research direction in Declarative Process Mining is whether multi-perspective specifications can be supported, i.e., specifications that not only describe the process behavior from the control-flow point of view, but also from other perspectives like data or time. In this paper, we address this question by considering SAT (Propositional Satisfiability Problem) as a solving technology for a number of classical problems in Declarative Process Mining, namely log generation, conformance checking and temporal query checking. To do so, we first express each problem as a suitable FO (First-Order) theory whose bounded models represent solutions to the problem, and then find a bounded model of such theory by compilation into SAT

    Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application

    Full text link
    [EN] The study presents some results of customer paths¿ analysis in a shopping mall. Bluetooth-based technology is used to collect data. The event log containing spatiotemporal information is analyzed with process mining. Process mining is a technique that enables one to see the whole process contrary to data-centric methods. The use of process mining can provide a readily-understandable view of the customer paths. We installed iBeacon devices, a Bluetooth-based positioning system, in the shopping mall. During December 2017 and January and February 2018, close to 8000 customer data were captured. We aim to investigate customer behaviors regarding gender by using their paths. We can determine the gender of customers if they go to the men¿s bathroom or women¿s bathroom. Since the study has a comprehensive scope, we focused on male and female customers¿ behaviors. This study shows that male and female customers have different behaviors. Their duration and paths, in general, are not similar. In addition, the study shows that the process mining technique is a viable way to analyze customer behavior using Bluetooth-based technology.Dogan, O.; Bayo-Monton, JL.; Fernández Llatas, C.; Oztaysi, B. (2019). Analyzing of Gender Behaviors from Paths Using Process Mining: A Shopping Mall Application. Sensors. 19(3):1-20. https://doi.org/10.3390/s19030557S120193Oosterlinck, D., Benoit, D. F., Baecke, P., & Van de Weghe, N. (2017). Bluetooth tracking of humans in an indoor environment: An application to shopping mall visits. Applied Geography, 78, 55-65. doi:10.1016/j.apgeog.2016.11.005Merad, D., Aziz, K.-E., Iguernaissi, R., Fertil, B., & Drap, P. (2016). Tracking multiple persons under partial and global occlusions: Application to customers’ behavior analysis. Pattern Recognition Letters, 81, 11-20. doi:10.1016/j.patrec.2016.04.011Wu, Y., Wang, H.-C., Chang, L.-C., & Chou, S.-C. (2015). Customer’s Flow Analysis in Physical Retail Store. Procedia Manufacturing, 3, 3506-3513. doi:10.1016/j.promfg.2015.07.672Dogan, O., & Öztaysi, B. (2018). In-store behavioral analytics technology selection using fuzzy decision making. Journal of Enterprise Information Management, 31(4), 612-630. doi:10.1108/jeim-02-2018-0035Hwang, I., & Jang, Y. J. (2017). Process Mining to Discover Shoppers’ Pathways at a Fashion Retail Store Using a WiFi-Base Indoor Positioning System. IEEE Transactions on Automation Science and Engineering, 14(4), 1786-1792. doi:10.1109/tase.2017.2692961Abedi, N., Bhaskar, A., Chung, E., & Miska, M. (2015). Assessment of antenna characteristic effects on pedestrian and cyclists travel-time estimation based on Bluetooth and WiFi MAC addresses. Transportation Research Part C: Emerging Technologies, 60, 124-141. doi:10.1016/j.trc.2015.08.010Mou, S., Robb, D. J., & DeHoratius, N. (2018). Retail store operations: Literature review and research directions. European Journal of Operational Research, 265(2), 399-422. doi:10.1016/j.ejor.2017.07.003Fernandez-Llatas, C., Lizondo, A., Monton, E., Benedi, J.-M., & Traver, V. (2015). Process Mining Methodology for Health Process Tracking Using Real-Time Indoor Location Systems. Sensors, 15(12), 29821-29840. doi:10.3390/s151229769Van der Aalst, W. M. P., van Dongen, B. F., Herbst, J., Maruster, L., Schimm, G., & Weijters, A. J. M. M. (2003). Workflow mining: A survey of issues and approaches. Data & Knowledge Engineering, 47(2), 237-267. doi:10.1016/s0169-023x(03)00066-1Ou-Yang, C., & Winarjo, H. (2011). Petri-net integration – An approach to support multi-agent process mining. Expert Systems with Applications, 38(4), 4039-4051. doi:10.1016/j.eswa.2010.09.066Partington, A., Wynn, M., Suriadi, S., Ouyang, C., & Karnon, J. (2015). Process Mining for Clinical Processes. ACM Transactions on Management Information Systems, 5(4), 1-18. doi:10.1145/2629446Yoo, S., Cho, M., Kim, E., Kim, S., Sim, Y., Yoo, D., … Song, M. (2016). Assessment of hospital processes using a process mining technique: Outpatient process analysis at a tertiary hospital. International Journal of Medical Informatics, 88, 34-43. doi:10.1016/j.ijmedinf.2015.12.018Funkner, A. A., Yakovlev, A. N., & Kovalchuk, S. V. (2017). Towards evolutionary discovery of typical clinical pathways in electronic health records. Procedia Computer Science, 119, 234-244. doi:10.1016/j.procs.2017.11.181Jans, M., Alles, M., & Vasarhelyi, M. (2013). The case for process mining in auditing: Sources of value added and areas of application. International Journal of Accounting Information Systems, 14(1), 1-20. doi:10.1016/j.accinf.2012.06.015Yoshimura, Y., Sobolevsky, S., Ratti, C., Girardin, F., Carrascal, J. P., Blat, J., & Sinatra, R. (2014). An Analysis of Visitors’ Behavior in the Louvre Museum: A Study Using Bluetooth Data. Environment and Planning B: Planning and Design, 41(6), 1113-1131. doi:10.1068/b130047pDe Leoni, M., van der Aalst, W. M. P., & Dees, M. (2016). A general process mining framework for correlating, predicting and clustering dynamic behavior based on event logs. Information Systems, 56, 235-257. doi:10.1016/j.is.2015.07.003Rebuge, Á., & Ferreira, D. R. (2012). Business process analysis in healthcare environments: A methodology based on process mining. Information Systems, 37(2), 99-116. doi:10.1016/j.is.2011.01.003Arroyo, R., Yebes, J. J., Bergasa, L. M., Daza, I. G., & Almazán, J. (2015). Expert video-surveillance system for real-time detection of suspicious behaviors in shopping malls. Expert Systems with Applications, 42(21), 7991-8005. doi:10.1016/j.eswa.2015.06.016Popa, M. C., Rothkrantz, L. J. M., Shan, C., Gritti, T., & Wiggers, P. (2013). Semantic assessment of shopping behavior using trajectories, shopping related actions, and context information. Pattern Recognition Letters, 34(7), 809-819. doi:10.1016/j.patrec.2012.04.015Kang, L., & Hansen, M. (2017). Behavioral analysis of airline scheduled block time adjustment. Transportation Research Part E: Logistics and Transportation Review, 103, 56-68. doi:10.1016/j.tre.2017.04.004Rovani, M., Maggi, F. M., de Leoni, M., & van der Aalst, W. M. P. (2015). Declarative process mining in healthcare. Expert Systems with Applications, 42(23), 9236-9251. doi:10.1016/j.eswa.2015.07.040Fernández-Llatas, C., Benedi, J.-M., García-Gómez, J., & Traver, V. (2013). Process Mining for Individualized Behavior Modeling Using Wireless Tracking in Nursing Homes. Sensors, 13(11), 15434-15451. doi:10.3390/s131115434Van der Aalst, W. M. P., Reijers, H. A., Weijters, A. J. M. M., van Dongen, B. F., Alves de Medeiros, A. K., Song, M., & Verbeek, H. M. W. (2007). Business process mining: An industrial application. Information Systems, 32(5), 713-732. doi:10.1016/j.is.2006.05.003M. Valle, A., A.P. Santos, E., & R. Loures, E. (2017). Applying process mining techniques in software process appraisals. Information and Software Technology, 87, 19-31. doi:10.1016/j.infsof.2017.01.004Juhaňák, L., Zounek, J., & Rohlíková, L. (2019). Using process mining to analyze students’ quiz-taking behavior patterns in a learning management system. Computers in Human Behavior, 92, 496-506. doi:10.1016/j.chb.2017.12.015Sedrakyan, G., De Weerdt, J., & Snoeck, M. (2016). Process-mining enabled feedback: «Tell me what I did wrong» vs. «tell me how to do it right». Computers in Human Behavior, 57, 352-376. doi:10.1016/j.chb.2015.12.040Schoor, C., & Bannert, M. (2012). Exploring regulatory processes during a computer-supported collaborative learning task using process mining. Computers in Human Behavior, 28(4), 1321-1331. doi:10.1016/j.chb.2012.02.016Werner, M., & Gehrke, N. (2015). Multilevel Process Mining for Financial Audits. IEEE Transactions on Services Computing, 8(6), 820-832. doi:10.1109/tsc.2015.2457907De Weerdt, J., Schupp, A., Vanderloock, A., & Baesens, B. (2013). Process Mining for the multi-faceted analysis of business processes—A case study in a financial services organization. Computers in Industry, 64(1), 57-67. doi:10.1016/j.compind.2012.09.010Herbert, L., Hansen, Z. N. L., Jacobsen, P., & Cunha, P. (2014). Evolutionary Optimization of Production Materials Workflow Processes. Procedia CIRP, 25, 53-60. doi:10.1016/j.procir.2014.10.010Yim, J., Jeong, S., Gwon, K., & Joo, J. (2010). Improvement of Kalman filters for WLAN based indoor tracking. Expert Systems with Applications, 37(1), 426-433. doi:10.1016/j.eswa.2009.05.047Delafontaine, M., Versichele, M., Neutens, T., & Van de Weghe, N. (2012). Analysing spatiotemporal sequences in Bluetooth tracking data. Applied Geography, 34, 659-668. doi:10.1016/j.apgeog.2012.04.003Frisby, J., Smith, V., Traub, S., & Patel, V. L. (2017). Contextual Computing : A Bluetooth based approach for tracking healthcare providers in the emergency room. Journal of Biomedical Informatics, 65, 97-104. doi:10.1016/j.jbi.2016.11.008Yoshimura, Y., Krebs, A., & Ratti, C. (2017). Noninvasive Bluetooth Monitoring of Visitors’ Length of Stay at the Louvre. IEEE Pervasive Computing, 16(2), 26-34. doi:10.1109/mprv.2017.33Cao, Q., Jones, D. R., & Sheng, H. (2014). Contained nomadic information environments: Technology, organization, and environment influences on adoption of hospital RFID patient tracking. Information & Management, 51(2), 225-239. doi:10.1016/j.im.2013.11.007Larson, J. S., Bradlow, E. T., & Fader, P. S. (2005). An exploratory look at supermarket shopping paths. International Journal of Research in Marketing, 22(4), 395-414. doi:10.1016/j.ijresmar.2005.09.005Fernandez-Llatas, C., Martinez-Millana, A., Martinez-Romero, A., Benedi, J. M., & Traver, V. (2015). Diabetes care related process modelling using Process Mining techniques. Lessons learned in the application of Interactive Pattern Recognition: coping with the Spaghetti Effect. 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC). doi:10.1109/embc.2015.7318809Conca, T., Saint-Pierre, C., Herskovic, V., Sepúlveda, M., Capurro, D., Prieto, F., & Fernandez-Llatas, C. (2018). Multidisciplinary Collaboration in the Treatment of Patients With Type 2 Diabetes in Primary Care: Analysis Using Process Mining. Journal of Medical Internet Research, 20(4), e127. doi:10.2196/jmir.8884De Medeiros, A. K. A., Weijters, A. J. M. M., & van der Aalst, W. M. P. (2007). Genetic process mining: an experimental evaluation. Data Mining and Knowledge Discovery, 14(2), 245-304. doi:10.1007/s10618-006-0061-7Heyer, L. J. (1999). Exploring Expression Data: Identification and Analysis of Coexpressed Genes. Genome Research, 9(11), 1106-1115. doi:10.1101/gr.9.11.1106Yang, W.-S., & Hwang, S.-Y. (2006). A process-mining framework for the detection of healthcare fraud and abuse. Expert Systems with Applications, 31(1), 56-68. doi:10.1016/j.eswa.2005.09.00

    Process Mining Handbook

    Get PDF
    This is an open access book. This book comprises all the single courses given as part of the First Summer School on Process Mining, PMSS 2022, which was held in Aachen, Germany, during July 4-8, 2022. This volume contains 17 chapters organized into the following topical sections: Introduction; process discovery; conformance checking; data preprocessing; process enhancement and monitoring; assorted process mining topics; industrial perspective and applications; and closing

    On the use of hierarchical subtrace mining for efficient local process model mining

    Get PDF
    Mining local patterns of process behavior is a vital tool for the analysis of event data that originates from flexible processes, for which it is generally not possible to describe the behavior of the process in a single process model without overgeneralizing the behavior allowed by the process. Several techniques for mining such local patterns have been developed throughout the years, including Local Process Model (LPM) mining and the hierarchical mining of frequent subtraces (i.e., subprocesses). These two techniques can be considered to be orthogonal, i.e., they provide different types of insights on the behavior observed in an event log. As a consequence, it is often useful to apply both techniques to the data. However, both techniques can be computationally intensive, hindering data analysis. In this work, we explore how the output of a subtrace mining approach can be used to mine LPMs more efficiently. We show on a collection of real-life event logs that exploiting the ordering constraints extracted from subtraces lowers the computation time needed for LPM mining compared to state-of-the-art techniques, while at the same time mining higher quality LPMs. Additionally, by mining LPMs from subtraces, we can obtain a more structured and meaningful representation of subprocesses allowing for classic process-flow constructs such as parallel ordering, choices, and loops, besides the precedence relations shown by subtraces.</p

    A knowledge engineering approach to the recognition of genomic coding regions

    Get PDF
    ได้ทุนอุดหนุนการวิจัยจากมหาวิทยาลัยเทคโนโลยีสุรนารี ปีงบประมาณ พ.ศ.2556-255
    corecore