1,242 research outputs found

    Systematic functional design of an XML editor

    Get PDF

    Modules and Dialects as Objects in Grace

    Get PDF
    Grace is a gradually typed, object-oriented language for use in education; consonant with that use, we have tried to keep Grace as simple and straightforward as possible. Grace needs a module system for several reasons: to teach students about modular program design, to organise large programs, especially its self-hosted implementation, to provide access to resources defined in other languages, and to support different “dialects”—language subsets, or domain specific languages, for particular parts of the curriculum. Grace already has several organising constructs; this paper describes how Grace uses two of them, objects and lexical scope, to provide modules and dialects

    Concrete Syntax with Black Box Parsers

    Get PDF
    Context: Meta programming consists for a large part of matching, analyzing, and transforming syntax trees. Many meta programming systems process abstract syntax trees, but this requires intimate knowledge of the structure of the data type describing the abstract syntax. As a result, meta programming is error-prone, and meta programs are not resilient to evolution of the structure of such ASTs, requiring invasive, fault-prone change to these programs. Inquiry: Concrete syntax patterns alleviate this problem by allowing the meta programmer to match and create syntax trees using the actual syntax of the object language. Systems supporting concrete syntax patterns, however, require a concrete grammar of the object language in their own formalism. Creating such grammars is a costly and error-prone process, especially for realistic languages such as Java and C++. Approach: In this paper we present Concretely, a technique to extend meta programming systems with pluggable concrete syntax patterns, based on external, black box parsers. We illustrate Concretely in the context of Rascal, an open-source meta programming system and language workbench, and show how to reuse existing parsers for Java, JavaScript, and C++. Furthermore, we propose Tympanic, a DSL to declaratively map external AST structures to Rascal's internal data structures. Tympanic allows implementors of Concretely to solve the impedance mismatch between object-oriented class hierarchies in Java and Rascal's algebraic data types. Both the algebraic data type and AST marshalling code is automatically generated. Knowledge: The conceptual architecture of Concretely and Tympanic supports the reuse of pre-existing, external parsers, and their AST representation in meta programming systems that feature concrete syntax patterns for matching and constructing syntax trees. As such this opens up concrete syntax pattern matching for a host of realistic languages for which writing a grammar from scratch is time consuming and error-prone, but for which industry-strength parsers exist in the wild. Grounding: We evaluate Concretely in terms of source lines of code (SLOC), relative to the size of the AST data type and marshalling code. We show that for real programming languages such as C++ and Java, adding support for concrete syntax patterns takes an effort only in the order of dozens of SLOC. Similarly, we evaluate Tympanic in terms of SLOC, showing an order of magnitude of reduction in SLOC compared to manual implementation of the AST data types and marshalling code. Importance: Meta programming has applications in reverse engineering, reengineering, source code analysis, static analysis, software renovation, domain-specific language engineering, and many others. Processing of syntax trees is central to all of these tasks. Concrete syntax patterns improve the practice of constructing meta programs. The combination of Concretely and Tympanic has the potential to make concrete syntax patterns available with very little effort, thereby improving and promoting the application of meta programming in the general software engineering context

    Practical Datatype Specializations with Phantom Types and Recursion Schemes

    Get PDF
    Datatype specialization is a form of subtyping that captures program invariants on data structures that are expressed using the convenient and intuitive datatype notation. Of particular interest are structural invariants such as well-formedness. We investigate the use of phantom types for describing datatype specializations. We show that it is possible to express statically-checked specializations within the type system of Standard ML. We also show that this can be done in a way that does not lose useful programming facilities such as pattern matching in case expressions.Comment: 25 pages. Appeared in the Proc. of the 2005 ACM SIGPLAN Workshop on M
    • …
    corecore