1,403 research outputs found

    Towards declarative diagnosis of constraint programs over finite domains

    Full text link
    The paper proposes a theoretical approach of the debugging of constraint programs based on a notion of explanation tree. The proposed approach is an attempt to adapt algorithmic debugging to constraint programming. In this theoretical framework for domain reduction, explanations are proof trees explaining value removals. These proof trees are defined by inductive definitions which express the removals of values as consequences of other value removals. Explanations may be considered as the essence of constraint programming. They are a declarative view of the computation trace. The diagnosis consists in locating an error in an explanation rooted by a symptom.Comment: In M. Ronsse, K. De Bosschere (eds), proceedings of the Fifth International Workshop on Automated Debugging (AADEBUG 2003), September 2003, Ghent. cs.SE/030902

    A Survey of Algorithmic Debugging

    Full text link
    "© ACM, 2017. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version was published in ACM Computing Surveys, {50, 4, 2017} https://dl.acm.org/doi/10.1145/3106740"[EN] Algorithmic debugging is a technique proposed in 1982 by E. Y. Shapiro in the context of logic programming. This survey shows how the initial ideas have been developed to become a widespread debugging schema ftting many diferent programming paradigms and with applications out of the program debugging feld. We describe the general framework and the main issues related to the implementations in diferent programming paradigms and discuss several proposed improvements and optimizations. We also review the main algorithmic debugger tools that have been implemented so far and compare their features. From this comparison, we elaborate a summary of desirable characteristics that should be considered when implementing future algorithmic debuggers.This work has been partially supported by the EU (FEDER) and the Spanish Ministerio de Economia y Competitividad under grant TIN2013-44742-C4-1-R, TIN2016-76843-C4-1-R, StrongSoft (TIN2012-39391-C04-04), and TRACES (TIN2015-67522-C3-3-R) by the Generalitat Valenciana under grant PROMETEO-II/2015/013 (SmartLogic) and by the Comunidad de Madrid project N-Greens Software-CM (S2013/ICE-2731).Caballero, R.; Riesco, A.; Silva, J. (2017). A Survey of Algorithmic Debugging. ACM Computing Surveys. 50(4):1-35. https://doi.org/10.1145/3106740S135504Abramson, D., Foster, I., Michalakes, J., & SosiÄŤ, R. (1996). Relative debugging. Communications of the ACM, 39(11), 69-77. doi:10.1145/240455.240475K. R. Apt H. A. Blair and A. Walker. 1988. Towards a theory of declarative knowledge. In Foundations of Deductive Databases and Logic Programming J. Minker (Ed.). Morgan Kaufmann Publishers Inc. San Francisco CA 89--148. 10.1016/B978-0-934613-40-8.50006-3 K. R. Apt H. A. Blair and A. Walker. 1988. Towards a theory of declarative knowledge. In Foundations of Deductive Databases and Logic Programming J. Minker (Ed.). Morgan Kaufmann Publishers Inc. San Francisco CA 89--148. 10.1016/B978-0-934613-40-8.50006-3Arora, T., Ramakrishnan, R., Roth, W. G., Seshadri, P., & Srivastava, D. (1993). Explaining program execution in deductive systems. Lecture Notes in Computer Science, 101-119. doi:10.1007/3-540-57530-8_7E. Av-Ron. 1984. Top-Down Diagnosis of Prolog Programs. Ph.D. Dissertation. Weizmann Institute. E. Av-Ron. 1984. Top-Down Diagnosis of Prolog Programs. Ph.D. Dissertation. Weizmann Institute.A. Beaulieu. 2005. Learning SQL. O’Reilly Farnham UK. A. Beaulieu. 2005. Learning SQL. O’Reilly Farnham UK.D. Binks. 1995. Declarative Debugging in Gödel. Ph.D. Dissertation. University of Bristol. D. Binks. 1995. Declarative Debugging in Gödel. Ph.D. Dissertation. University of Bristol.B. BraĂźel and H. Siegel. 2008. Debugging Lazy Functional Programs by Asking the Oracle. Springer-Verlag Berlin 183--200. DOI:http://dx.doi.org/10.1007/978-3-540-85373-2_11 10.1007/978-3-540-85373-2_11 B. BraĂźel and H. Siegel. 2008. Debugging Lazy Functional Programs by Asking the Oracle. Springer-Verlag Berlin 183--200. DOI:http://dx.doi.org/10.1007/978-3-540-85373-2_11 10.1007/978-3-540-85373-2_11Caballero, R. (2005). A declarative debugger of incorrect answers for constraint functional-logic programs. Proceedings of the 2005 ACM SIGPLAN workshop on Curry and functional logic programming - WCFLP ’05. doi:10.1145/1085099.1085102Caballero, R., GarcĂ­a-Ruiz, Y., & Sáenz-PĂ©rez, F. (2012). Declarative Debugging of Wrong and Missing Answers for SQL Views. Lecture Notes in Computer Science, 73-87. doi:10.1007/978-3-642-29822-6_9Caballero, R., GarcĂ­a-Ruiz, Y., & Sáenz-PĂ©rez, F. (2015). Debugging of wrong and missing answers for datalog programs with constraint handling rules. Proceedings of the 17th International Symposium on Principles and Practice of Declarative Programming - PPDP ’15. doi:10.1145/2790449.2790522Caballero, R., Martin-Martin, E., Riesco, A., & Tamarit, S. (2015). A zoom-declarative debugger for sequential Erlang programs. Science of Computer Programming, 110, 104-118. doi:10.1016/j.scico.2015.06.011Caballero, R., & RodrĂ­guez-Artalejo, M. (2002). A Declarative Debugging System for Lazy Functional Logic Programs. Electronic Notes in Theoretical Computer Science, 64, 113-175. doi:10.1016/s1571-0661(04)80349-9Ceri, S., Gottlob, G., & Tanca, L. (1989). What you always wanted to know about Datalog (and never dared to ask). IEEE Transactions on Knowledge and Data Engineering, 1(1), 146-166. doi:10.1109/69.43410Chen, M., Mao, S., & Liu, Y. (2014). Big Data: A Survey. Mobile Networks and Applications, 19(2), 171-209. doi:10.1007/s11036-013-0489-0Chitil, O., & Davie, T. (2008). Comprehending finite maps for algorithmic debugging of higher-order functional programs. Proceedings of the 10th international ACM SIGPLAN symposium on Principles and practice of declarative programming - PPDP ’08. doi:10.1145/1389449.1389475Chitil, O., Faddegon, M., & Runciman, C. (2016). A Lightweight Hat. Proceedings of the 28th Symposium on the Implementation and Application of Functional Programming Languages - IFL 2016. doi:10.1145/3064899.3064904O. Chitil C. Runciman and M. Wallace. 2001. Freja Hat and Hood—A Comparative Evaluation of Three Systems for Tracing and Debugging Lazy Functional Programs. Springer Berlin 176--193. O. Chitil C. Runciman and M. Wallace. 2001. Freja Hat and Hood—A Comparative Evaluation of Three Systems for Tracing and Debugging Lazy Functional Programs. Springer Berlin 176--193.O. Chitil C. Runciman and Malcolm Wallace. 2003. Transforming Haskell for Tracing. Springer-Verlag Berlin 165--181. DOI:http://dx.doi.org/10.1007/3-540-44854-3_11 10.1007/3-540-44854-3_11 O. Chitil C. Runciman and Malcolm Wallace. 2003. Transforming Haskell for Tracing. Springer-Verlag Berlin 165--181. DOI:http://dx.doi.org/10.1007/3-540-44854-3_11 10.1007/3-540-44854-3_11Minh Ngoc Dinh, Abramson, D., & Chao Jin. (2014). Scalable Relative Debugging. IEEE Transactions on Parallel and Distributed Systems, 25(3), 740-749. doi:10.1109/tpds.2013.86Faddegon, M., & Chitil, O. (2015). Algorithmic debugging of real-world haskell programs: deriving dependencies from the cost centre stack. ACM SIGPLAN Notices, 50(6), 33-42. doi:10.1145/2813885.2737985Faddegon, M., & Chitil, O. (2016). Lightweight computation tree tracing for lazy functional languages. Proceedings of the 37th ACM SIGPLAN Conference on Programming Language Design and Implementation - PLDI 2016. doi:10.1145/2908080.2908104Ferrand, G. (1987). Error diagnosis in logic programming an adaptation of E.Y. Shapiro’s method. The Journal of Logic Programming, 4(3), 177-198. doi:10.1016/0743-1066(87)90001-xFritzson, P., Shahmehri, N., Kamkar, M., & Gyimothy, T. (1992). Generalized algorithmic debugging and testing. ACM Letters on Programming Languages and Systems, 1(4), 303-322. doi:10.1145/161494.161498Fromherz, M. P. J. (s. f.). Towards declarative debugging of concurrent constraint programs. Lecture Notes in Computer Science, 88-100. doi:10.1007/bfb0019403Harman, M., & Hierons, R. (2001). An overview of program slicing. Software Focus, 2(3), 85-92. doi:10.1002/swf.41F. Henderson T. Conway Z. Somogyi D. Jeffery P. Schachte S. Taylor C. Speirs T. Dowd R. Becket M. Brown and P. Wang. 2014. The Mercury Language Reference Manual (Version 14.01.1). The University of Melbourne. F. Henderson T. Conway Z. Somogyi D. Jeffery P. Schachte S. Taylor C. Speirs T. Dowd R. Becket M. Brown and P. Wang. 2014. The Mercury Language Reference Manual (Version 14.01.1). The University of Melbourne.C. Hermanns and H. Kuchen. 2013. Hybrid Debugging of Java Programs. Springer-Verlag Berlin 91--107. DOI:http://dx.doi.org/10.1007/978-3-642-36177-7_6 10.1007/978-3-642-36177-7_6 C. Hermanns and H. Kuchen. 2013. Hybrid Debugging of Java Programs. Springer-Verlag Berlin 91--107. DOI:http://dx.doi.org/10.1007/978-3-642-36177-7_6 10.1007/978-3-642-36177-7_6Hirunkitti, V., & Hogger, C. J. (s. f.). A generalised query minimisation for program debugging. Lecture Notes in Computer Science, 153-170. doi:10.1007/bfb0019407Hughes, J. (2010). Software Testing with QuickCheck. Lecture Notes in Computer Science, 183-223. doi:10.1007/978-3-642-17685-2_6G. Hutton. 2016. Programming in Haskell. Cambridge University Press Cambridge UK. G. Hutton. 2016. Programming in Haskell. Cambridge University Press Cambridge UK.Insa, D., & Silva, J. (2010). An algorithmic debugger for Java. 2010 IEEE International Conference on Software Maintenance. doi:10.1109/icsm.2010.5609661Insa, D., & Silva, J. (2011). Optimal Divide and Query. Lecture Notes in Computer Science, 224-238. doi:10.1007/978-3-642-24769-9_17Insa, D., & Silva, J. (2011). An optimal strategy for algorithmic debugging. 2011 26th IEEE/ACM International Conference on Automated Software Engineering (ASE 2011). doi:10.1109/ase.2011.6100055D. Insa and J. Silva. 2011c. Scaling Up Algorithmic Debugging with Virtual Execution Trees. Springer-Verlag Berlin 149--163. DOI:http://dx.doi.org/10.1007/978-3-642-20551-4_10 10.1007/978-3-642-20551-4_10 D. Insa and J. Silva. 2011c. Scaling Up Algorithmic Debugging with Virtual Execution Trees. Springer-Verlag Berlin 149--163. DOI:http://dx.doi.org/10.1007/978-3-642-20551-4_10 10.1007/978-3-642-20551-4_10D. Insa and J. Silva. 2015a. Automatic transformation of iterative loops into recursive methods. Information 8 Software Technology 58 (2015) 95--109. DOI:http://dx.doi.org/10.1016/j.infsof.2014.10.001 10.1016/j.infsof.2014.10.001 D. Insa and J. Silva. 2015a. Automatic transformation of iterative loops into recursive methods. Information 8 Software Technology 58 (2015) 95--109. DOI:http://dx.doi.org/10.1016/j.infsof.2014.10.001 10.1016/j.infsof.2014.10.001Insa, D., & Silva, J. (2015). A Generalized Model for Algorithmic Debugging. Lecture Notes in Computer Science, 261-276. doi:10.1007/978-3-319-27436-2_16Insa, D., Silva, J., & Riesco, A. (2013). Speeding Up Algorithmic Debugging Using Balanced Execution Trees. Lecture Notes in Computer Science, 133-151. doi:10.1007/978-3-642-38916-0_8Insa, D., Silva, J., & Tomás, C. (2013). Enhancing Declarative Debugging with Loop Expansion and Tree Compression. Lecture Notes in Computer Science, 71-88. doi:10.1007/978-3-642-38197-3_6K. Jensen and N. Wirth. 1974. PASCAL User Manual and Report. Springer-Verlag Berlin. 10.1007/978-3-662-21554-8 K. Jensen and N. Wirth. 1974. PASCAL User Manual and Report. Springer-Verlag Berlin. 10.1007/978-3-662-21554-8Jia, Y., & Harman, M. (2011). An Analysis and Survey of the Development of Mutation Testing. IEEE Transactions on Software Engineering, 37(5), 649-678. doi:10.1109/tse.2010.62Kamkar, M., Shahmehri, N., & Fritzson, P. (s. f.). Bug localization by algorithmic debugging and program slicing. Lecture Notes in Computer Science, 60-74. doi:10.1007/bfb0024176S. Köhler B. Ludäscher and Y. Smaragdakis. 2012. Declarative Datalog Debugging for Mere Mortals. Springer-Verlag Berlin 111--122. S. Köhler B. Ludäscher and Y. Smaragdakis. 2012. Declarative Datalog Debugging for Mere Mortals. Springer-Verlag Berlin 111--122.Kouh, H.-J., & Yoo, W.-H. (2003). The Efficient Debugging System for Locating Logical Errors in Java Programs. Lecture Notes in Computer Science, 684-693. doi:10.1007/3-540-44839-x_72BenzmĂĽller, C., & Miller, D. (2014). Automation of Higher-Order Logic. Handbook of the History of Logic, 215-254. doi:10.1016/b978-0-444-51624-4.50005-8Kowalski, R., & Kuehner, D. (1971). Linear resolution with selection function. Artificial Intelligence, 2(3-4), 227-260. doi:10.1016/0004-3702(71)90012-9K. Kuchcinski W. Drabent and J. Maluszynski. 1993. Automatic Diagnosis of VLSI Digital Circuits Using Algorithmic Debugging. Springer-Verlag Berlin 350--367. DOI:http://dx.doi.org/10.1007/BFb0019419 10.1007/BFb0019419 K. Kuchcinski W. Drabent and J. Maluszynski. 1993. Automatic Diagnosis of VLSI Digital Circuits Using Algorithmic Debugging. Springer-Verlag Berlin 350--367. DOI:http://dx.doi.org/10.1007/BFb0019419 10.1007/BFb0019419S. Liang. 1999. Java Native Interface: Programmer’s Guide and Reference (1st ed.). Addison-Wesley Longman Publishing Co. Inc. Boston MA. S. Liang. 1999. Java Native Interface: Programmer’s Guide and Reference (1st ed.). Addison-Wesley Longman Publishing Co. Inc. Boston MA.Lloyd, J. W. (1987). Declarative error diagnosis. New Generation Computing, 5(2), 133-154. doi:10.1007/bf03037396J. W. Lloyd. 1987b. Foundations of Logic Programming (2nd ed.). Springer-Verlag Berlin. 10.1007/978-3-642-83189-8 J. W. Lloyd. 1987b. Foundations of Logic Programming (2nd ed.). Springer-Verlag Berlin. 10.1007/978-3-642-83189-8W. Lux. 2006. MĂĽnster Curry User’s guide (Release 0.9.10 of May 10 2006). Retrieved from http://danae.uni-muenster.de/∼lux/curry/user.pdf. W. Lux. 2006. MĂĽnster Curry User’s guide (Release 0.9.10 of May 10 2006). Retrieved from http://danae.uni-muenster.de/∼lux/curry/user.pdf.Lux, W. (2008). Declarative Debugging Meets the World. Electronic Notes in Theoretical Computer Science, 216, 65-77. doi:10.1016/j.entcs.2008.06.034I. MacLarty. 2005. Practical Declarative Debugging of Mercury Programs. Ph.D. Dissertation. Department of Computer Science and Software Engineering The University of Melbourne. I. MacLarty. 2005. Practical Declarative Debugging of Mercury Programs. Ph.D. Dissertation. Department of Computer Science and Software Engineering The University of Melbourne.Naganuma, J., Ogura, T., & Hoshino, T. (s. f.). High-level design validation using algorithmic debugging. Proceedings of European Design and Test Conference EDAC-ETC-EUROASIC. doi:10.1109/edtc.1994.326833Naish, L. (1992). Declarative diagnosis of missing answers. New Generation Computing, 10(3), 255-285. doi:10.1007/bf03037939H. Nilsson. 1998. Declarative Debugging for Lazy Functional Languages. Ph.D. Dissertation. Linköping Sweden. H. Nilsson. 1998. Declarative Debugging for Lazy Functional Languages. Ph.D. Dissertation. Linköping Sweden.NILSSON, H. (2001). How to look busy while being as lazy as ever: the Implementation of a lazy functional debugger. Journal of Functional Programming, 11(6), 629-671. doi:10.1017/s095679680100418xNilsson, H., & Fritzson, P. (s. f.). Algorithmic debugging for lazy functional languages. Lecture Notes in Computer Science, 385-399. doi:10.1007/3-540-55844-6_149Nilsson, H., & Fritzson, P. (1994). Algorithmic debugging for lazy functional languages. Journal of Functional Programming, 4(3), 337-369. doi:10.1017/s095679680000109xNilsson, H., & Sparud, J. (1997). Automated Software Engineering, 4(2), 121-150. doi:10.1023/a:1008681016679Ostrand, T. J., & Balcer, M. J. (1988). The category-partition method for specifying and generating fuctional tests. Communications of the ACM, 31(6), 676-686. doi:10.1145/62959.62964Pereira, L. M. (1986). Rational debugging in logic programming. Third International Conference on Logic Programming, 203-210. doi:10.1007/3-540-16492-8_76B. Pope. 2006. A Declarative Debugger for Haskell. Ph.D. Dissertation. The University of Melbourne Australia. B. Pope. 2006. A Declarative Debugger for Haskell. Ph.D. Dissertation. The University of Melbourne Australia.Ramakrishnan, R., & Ullman, J. D. (1995). A survey of deductive database systems. The Journal of Logic Programming, 23(2), 125-149. doi:10.1016/0743-1066(94)00039-9Riesco, A., Verdejo, A., MartĂ­-Oliet, N., & Caballero, R. (2012). Declarative debugging of rewriting logic specifications. The Journal of Logic and Algebraic Programming, 81(7-8), 851-897. doi:10.1016/j.jlap.2011.06.004DeRose, L., Gontarek, A., Vose, A., Moench, R., Abramson, D., Dinh, M. N., & Jin, C. (2015). Relative debugging for a highly parallel hybrid computer system. Proceedings of the International Conference for High Performance Computing, Networking, Storage and Analysis on - SC ’15. doi:10.1145/2807591.2807605Runeson, P. (2006). A survey of unit testing practices. IEEE Software, 23(4), 22-29. doi:10.1109/ms.2006.91Russo, F., & Sancassani, M. (1992). A declarative debugging environment for DATALOG. Lecture Notes in Computer Science, 433-441. doi:10.1007/3-540-55460-2_32E. Y. Shapiro. 1982a. Algorithmic Program Debugging. MIT Press Cambridge MA. E. Y. Shapiro. 1982a. Algorithmic Program Debugging. MIT Press Cambridge MA.Shapiro, E. Y. (1982). Algorithmic program diagnosis. Proceedings of the 9th ACM SIGPLAN-SIGACT symposium on Principles of programming languages - POPL ’82. doi:10.1145/582153.582185Shmueli, O., & Tsur, S. (1991). Logical diagnosis ofLDL programs. New Generation Computing, 9(3-4), 277-303. doi:10.1007/bf03037166Silva, J. (s. f.). A Comparative Study of Algorithmic Debugging Strategies. Lecture Notes in Computer Science, 143-159. doi:10.1007/978-3-540-71410-1_11Silva, J. (2011). A survey on algorithmic debugging strategies. Advances in Engineering Software, 42(11), 976-991. doi:10.1016/j.advengsoft.2011.05.024Silva, J., & Chitil, O. (2006). Combining algorithmic debugging and program slicing. Proceedings of the 8th ACM SIGPLAN symposium on Principles and practice of declarative programming - PPDP ’06. doi:10.1145/1140335.1140355J. A. Silva E. R. Faria R. C. Barros E. R. Hruschka A. C. P. L. F. de Carvalho and J. Gama. 2013. Data stream clustering: A survey. Comput. Surv. 46 1 Article 13 (July 2013) 31 pages.DOI:http://dx.doi.org/10.1145/2522968.2522981 10.1145/2522968.2522981 J. A. Silva E. R. Faria R. C. Barros E. R. Hruschka A. C. P. L. F. de Carvalho and J. Gama. 2013. Data stream clustering: A survey. Comput. Surv. 46 1 Article 13 (July 2013) 31 pages.DOI:http://dx.doi.org/10.1145/2522968.2522981 10.1145/2522968.2522981SOSIÄŚ, R., & ABRAMSON, D. (1997). Guard: A Relative Debugger. Software: Practice and Experience, 27(2), 185-206. doi:10.1002/(sici)1097-024x(199702)27:23.0.co;2-dL. Sterling and E. Shapiro. 1986. The Art of Prolog: Advanced Programming Techniques. The MIT Press Cambridge MA. L. Sterling and E. Shapiro. 1986. The Art of Prolog: Advanced Programming Techniques. The MIT Press Cambridge MA.P. Kambam Sugavanam. 2013. Debugging Framework for Attribute Grammars. Ph.D. Dissertation. University of Minnesota. P. Kambam Sugavanam. 2013. Debugging Framework for Attribute Grammars. Ph.D. Dissertation. University of Minnesota.Tamarit, S., Riesco, A., Martin-Martin, E., & Caballero, R. (2016). Debugging Meets Testing in Erlang. Lecture Notes in Computer Science, 171-180. doi:10.1007/978-3-319-41135-4_10A. Tessier and G. Ferrand. 2000. Declarative diagnosis in the CLP scheme. In Analysis and Visualization Tools for Constraint Programming: Constraint Debugging Pierre Deransart Manuel V. Hermenegildo and Jan Maluszynski (Eds.). Springer-Verlag Berlin 151--174. 10.1007/10722311_6 A. Tessier and G. Ferrand. 2000. Declarative diagnosis in the CLP scheme. In Analysis and Visualization Tools for Constraint Programming: Constraint Debugging Pierre Deransart Manuel V. Hermenegildo and Jan Maluszynski (Eds.). Springer-Verlag Berlin 151--174. 10.1007/10722311_6Zinn, C. (2013). Algorithmic Debugging for Intelligent Tutoring: How to Use Multiple Models and Improve Diagnosis. Lecture Notes in Computer Science, 272-283. doi:10.1007/978-3-642-40942-4_24Zinn, C. (2014). Algorithmic Debugging and Literate Programming to Generate Feedback in Intelligent Tutoring Systems. KI 2014: Advances in Artificial Intelligence, 37-48. doi:10.1007/978-3-319-11206-0_

    Declarative Debugging of Missing Answers for Maude

    Get PDF
    Declarative debugging is a semi-automatic technique that starts from an incorrect computation and locates a program fragment responsible for the error by building a tree representing this computation and guiding the user through it to find the error. Membership equational logic (MEL) is an equational logic that in addition to equations allows the statement of membership axioms characterizing the elements of a sort. Rewriting logic is a logic of change that extends MEL by adding rewrite rules, that correspond to transitions between states and can be nondeterministic. In this paper we propose a calculus that allows to infer normal forms and least sorts with the equational part, and sets of reachable terms through rules. We use an abbreviation of the proof trees computed with this calculus to build appropriate debugging trees for missing answers (results that are erroneous because they are incomplete), whose adequacy for debugging is proved. Using these trees we have implemented a declarative debugger for Maude, a high-performance system based on rewriting logic, whose use is illustrated with an example

    Correctness and completeness of logic programs

    Full text link
    We discuss proving correctness and completeness of definite clause logic programs. We propose a method for proving completeness, while for proving correctness we employ a method which should be well known but is often neglected. Also, we show how to prove completeness and correctness in the presence of SLD-tree pruning, and point out that approximate specifications simplify specifications and proofs. We compare the proof methods to declarative diagnosis (algorithmic debugging), showing that approximate specifications eliminate a major drawback of the latter. We argue that our proof methods reflect natural declarative thinking about programs, and that they can be used, formally or informally, in every-day programming.Comment: 29 pages, 2 figures; with editorial modifications, small corrections and extensions. arXiv admin note: text overlap with arXiv:1411.3015. Overlaps explained in "Related Work" (p. 21

    The KB paradigm and its application to interactive configuration

    Full text link
    The knowledge base paradigm aims to express domain knowledge in a rich formal language, and to use this domain knowledge as a knowledge base to solve various problems and tasks that arise in the domain by applying multiple forms of inference. As such, the paradigm applies a strict separation of concerns between information and problem solving. In this paper, we analyze the principles and feasibility of the knowledge base paradigm in the context of an important class of applications: interactive configuration problems. In interactive configuration problems, a configuration of interrelated objects under constraints is searched, where the system assists the user in reaching an intended configuration. It is widely recognized in industry that good software solutions for these problems are very difficult to develop. We investigate such problems from the perspective of the KB paradigm. We show that multiple functionalities in this domain can be achieved by applying different forms of logical inferences on a formal specification of the configuration domain. We report on a proof of concept of this approach in a real-life application with a banking company. To appear in Theory and Practice of Logic Programming (TPLP).Comment: To appear in Theory and Practice of Logic Programming (TPLP
    • …
    corecore