332 research outputs found

    Mass assignment fuzzy ID3 with applications

    Get PDF

    Naive possibilistic classifiers for imprecise or uncertain numerical data

    Get PDF
    International audienceIn real-world problems, input data may be pervaded with uncertainty. In this paper, we investigate the behavior of naive possibilistic classifiers, as a counterpart to naive Bayesian ones, for dealing with classification tasks in the presence of uncertainty. For this purpose, we extend possibilistic classifiers, which have been recently adapted to numerical data, in order to cope with uncertainty in data representation. Here the possibility distributions that are used are supposed to encode the family of Gaussian probabilistic distributions that are compatible with the considered dataset. We consider two types of uncertainty: (i) the uncertainty associated with the class in the training set, which is modeled by a possibility distribution over class labels, and (ii) the imprecision pervading attribute values in the testing set represented under the form of intervals for continuous data. Moreover, the approach takes into account the uncertainty about the estimation of the Gaussian distribution parameters due to the limited amount of data available. We first adapt the possibilistic classification model, previously proposed for the certain case, in order to accommodate the uncertainty about class labels. Then, we propose an algorithm based on the extension principle to deal with imprecise attribute values. The experiments reported show the interest of possibilistic classifiers for handling uncertainty in data. In particular, the probability-to-possibility transform-based classifier shows a robust behavior when dealing with imperfect data

    Text Categorization and Machine Learning Methods: Current State Of The Art

    Get PDF
    In this informative age, we find many documents are available in digital forms which need classification of the text. For solving this major problem present researchers focused on machine learning techniques: a general inductive process automatically builds a classifier by learning, from a set of pre classified documents, the characteristics of the categories. The main benefit of the present approach is consisting in the manual definition of a classifier by domain experts where effectiveness, less use of expert work and straightforward portability to different domains are possible. The paper examines the main approaches to text categorization comparing the machine learning paradigm and present state of the art. Various issues pertaining to three different text similarity problems, namely, semantic, conceptual and contextual are also discussed

    An improved multiple classifier combination scheme for pattern classification

    Get PDF
    Combining multiple classifiers are considered as a new direction in the pattern recognition to improve classification performance. The main problem of multiple classifier combination is that there is no standard guideline for constructing an accurate and diverse classifier ensemble. This is due to the difficulty in identifying the number of homogeneous classifiers and how to combine the classifier outputs. The most commonly used ensemble method is the random strategy while the majority voting technique is used as the combiner. However, the random strategy cannot determine the number of classifiers and the majority voting technique does not consider the strength of each classifier, thus resulting in low classification accuracy. In this study, an improved multiple classifier combination scheme is proposed. The ant system (AS) algorithm is used to partition feature set in developing feature subsets which represent the number of classifiers. A compactness measure is introduced as a parameter in constructing an accurate and diverse classifier ensemble. A weighted voting technique is used to combine the classifier outputs by considering the strength of the classifiers prior to voting. Experiments were performed using four base classifiers, which are Nearest Mean Classifier (NMC), Naive Bayes Classifier (NBC), k-Nearest Neighbour (k-NN) and Linear Discriminant Analysis (LDA) on benchmark datasets, to test the credibility of the proposed multiple classifier combination scheme. The average classification accuracy of the homogeneous NMC, NBC, k-NN and LDA ensembles are 97.91%, 98.06%, 98.09% and 98.12% respectively. The accuracies are higher than those obtained through the use of other approaches in developing multiple classifier combination. The proposed multiple classifier combination scheme will help to develop other multiple classifier combination for pattern recognition and classification

    Self-Organizing Fuzzy Belief Inference System for Classification

    Get PDF
    Evolving fuzzy systems (EFSs) are widely known as a powerful tool for streaming data prediction. In this paper, a novel zero-order EFS with a unique belief structure is proposed for data stream classification. Thanks to this new belief structure, the proposed model can handle the inter-class overlaps in a natural way and better capture the underlying multi-model structure of data streams in the form of prototypes. Utilizing data-driven soft thresholds, the proposed model self-organizes a set of prototype-based IF-THEN fuzzy belief rules from data streams for classification, and its learning outcomes are practically meaningful. With no requirement of prior knowledge in the problem domain, the proposed model is capable of self-determining the appropriate level of granularity for rule base construction, while enabling users to specify their preferences on the degree of fineness of its knowledge base. Numerical examples demonstrate the superior performance of the proposed model on a wide range of stationary and nonstationary classification benchmark problems
    • …
    corecore