363 research outputs found

    Fault detection and prediction with application to rotating machinery

    Get PDF
    In this thesis, the detection and prediction of faults in rotating machinery is undertaken and presented in two papers. In the first paper, Principal Component Analysis (PCA), a well known data-driven dimension reduction technique, is applied to data for normal operation and four fault conditions from a one-half horsepower centrifugal water pump. Fault isolation in this scheme is done by observing the location of the data points in the Principal Component domain, and the time to failure (TTF) is calculated by applying statistical regression on the resulting PC scores. The application of the proposed scheme demonstrated that PCA was able to detect and isolate all four faults. Additionally, the TTF calculation for the impeller failure was found to yield satisfactory results. On the other hand, in the second paper, the fault detection and failure prediction are done by using a model based approach which utilizes a nonlinear observer consisting of an online approximator in discrete-time (OLAD) and a robust adaptive term. Once a fault has been detected, both the OLAD and the robust adaptive term are initiated and the OLAD then utilizes its update law to learn the unknown dynamics of the encountered fault. While in similar applications it is common to use neural networks to be used for the OLAD, in this paper an Artificial Immune System (AIS) is used for the OLAD. The proposed approach was verified through implementation on data from an axial piston pump. The scheme was able to satisfactorily detect and learn both an incipient piston wear fault and an abrupt sensor failure --Abstract, page iv

    Developing Leading and Lagging Indicators to Enhance Equipment Reliability in a Lean System

    Get PDF
    With increasing complexity in equipment, the failure rates are becoming a critical metric due to the unplanned maintenance in a production environment. Unplanned maintenance in manufacturing process is created issues with downtimes and decreasing the reliability of equipment. Failures in equipment have resulted in the loss of revenue to organizations encouraging maintenance practitioners to analyze ways to change unplanned to planned maintenance. Efficient failure prediction models are being developed to learn about the failures in advance. With this information, failures predicted can reduce the downtimes in the system and improve the throughput. The goal of this thesis is to predict failure in centrifugal pumps using various machine learning models like random forest, stochastic gradient boosting, and extreme gradient boosting. For accurate prediction, historical sensor measurements were modified into leading and lagging indicators which explained the failure patterns in the equipment were developed. The best subset of indicators was selected by filtering using random forest and utilized in the developed model. Finally, the models give a probability of failure before the failure occurs. Appropriate evaluation metrics were used to obtain the accurate model. The proposed methodology was illustrated with two case studies: first, to the centrifugal pump asset performance data provided by Meridium, Inc. and second, the data collected from aircraft turbine engine provided in the NASA prognostics data repository. The automated methodology was shown to develop and identify appropriate failure leading and lagging indicators in both cases and facilitate machine learning model development
    • …
    corecore