190,103 research outputs found

    Disaster resilience analysis of urban transportation networks to support decision-making on planning and expansion

    Get PDF
    HUB-Istanbul work package (WP) 2.6 aims to evaluate multi-hazard resilience analysis of urban transportation networks and suggest the potential approach for analysing the case study area, Fikirtepe, Istanbul, Turkey. Research outcomes will be conveyed by five deliverables. The first deliverable summarised the overall framework of analysis and required data for assessing physical vulnerability. Based on the framework, this second deliverable deals with the collection and handing of the data required to evaluate traffic functionality of roadways and system, while discussing characteristics and challenges in analysing transport systems, methods for quantifying system functionality, probabilistic analysis framework and selected analysis parameters in the present study. Based on the framework and datasets summarised in the first two deliverables, the third deliverable will develop a probabilistic model to incorporate multi-layered analysis and data, which will be demonstrated by pilot examples. The fourth deliverable will present a thorough analysis of real-world transportation networks in the case study area, including mapping, network analysis and network performance evaluation. The evaluation results should be used to support decisions through mathematically formulated decision tasks, which will be illustrated in the fifth deliverable. This second deliverable summarises the risk assessment of urban transportation networks, including the characteristics of urban transportation networks, evaluation of system functionality and probabilistic inference to support decision-making. Based on the investigation, this deliverable proposes the analysis framework and parameters to be used in this project, with a focus on the study area, Fikirtepe, Istanbul, Turkey

    Multi-objective network optimization: models, methods, and applications

    Get PDF
    There can be an array of planning objectives to consider when identifying alternatives for using, modifying, or restoring natural or built environments. In this respect, multi-objective network optimization models can provide decision support to both managers and users of the system. While there can be an infinite number of feasible solutions to any multi-objective optimization problem in large networks (e.g., urban transportation systems), the efficient ones are usually more desirable in the decision-making process. However, identification of efficient solutions can be challenging in practical applications. To address this issue, this dissertation details mathematical formulations and solution algorithms for a range of real-world planning problems in the context of intelligent transportation systems, vehicle routing problem, natural conservation and landscape connectivity. While the combination of objectives being optimized is unique for each application, the underlying phenomena involves modeling movement between origins and destinations of a networked system. To demonstrate the type of insights that can be achieved using these modeling approaches, the location and number of times solutions appear in different realizations of system and given different solution approaches (e.g., exact and approximate methods) are visualized on network using a commercial geographic information system

    A Quantitative Framework for Assessing Vulnerability and Redundancy of Freight Transportation Networks

    Get PDF
    Freight transportation networks are an important component of everyday life in modern society. Disruption to these networks can make peoples’ daily lives extremely difficult as well as seriously cripple economic productivity. This dissertation develops a quantitative framework for assessing vulnerability and redundancy of freight transportation networks. The framework consists of three major contributions: (1) a two- stage approach for estimating a statewide truck origin-destination (O-D) trip table, (2) a decision support tool for assessing vulnerability of freight transportation networks, and (3) a quantitative approach for measuring redundancy of freight transportation networks.The dissertation first proposes a two-stage approach to estimate a statewide truck O-D trip table. The proposed approach is supported by two sequential stages: the first stage estimates a commodity-based truck O-D trip table using the commodity flows derived from the Freight Analysis Framework (FAF) database, and the second stage uses the path flow estimator (PFE) concept to refine the truck trip table obtained from the first stage using the truck counts from the statewide truck count program. The model allows great flexibility of incorporating data at different spatial levels for estimating the truck O- D trip table. The results from the second stage provide us a better understanding of truck flows on the statewide truck routes and corridors, and allow us to better manage the anticipated impacts caused by network disruptions.A decision support tool is developed to facilitate the decision making system through the application of its database management capabilities, graphical user interface, GIS-based visualization, and transportation network vulnerability analysis. The vulnerability assessment focuses on evaluating the statewide truck-freight bottlenecks/chokepoints. This dissertation proposes two quantitative measures: O-D connectivity (or detour route) in terms of distance and freight flow pattern change in terms of vehicle miles traveled (VMT). The case study adopts a “what-if” analysis approach by generating the disruption scenarios of the structurally deficient bridges in Utah due to earthquakes. In addition, the potential impacts of disruptions to multiple bridges in both rural and urban areas are evaluated and compared to the single bridge failure scenarios.This dissertation also proposes an approach to measure the redundancy of freight transportation networks based on two main dimensions: route diversity and network spare capacity. The route diversity dimension is used to evaluate the existence of multiple efficient routes available for users or the degree of connections between a specific O-D pair. The network spare capacity dimension is used to quantify the network- wide spare capacity with an explicit consideration of congestion effect. These two dimensions can complement each other by providing a two-dimensional characterization of freight transportation network redundancy. Case studies of the Utah statewide transportation network and coal multimodal network are conducted to demonstrate the features of the vulnerability and redundancy measures and the applicability of the quantitative assessment methodology

    Microscopic traffic simulation as a decision support system for road diet and tactical urbanism strategies

    Get PDF
    Urban street networks in the United States have been primarily designed for automobile traffic with negligible considerations to non-motorized transportation users. Due to environmental issues and quality of life concerns, communities are reclaiming street spaces for active modes and slowing the speeds in their downtown. Moreover, tactical urbanism, i.e., the use of street space for innovative purposes other than moving automobile traffic, is becoming attractive due to reduced automobile travel demand and the need for outdoor activities in the age of the COVID-19 pandemic. This study provides details of the modeling of an urban downtown network (in the City of San Jose) using microscopic traffic simulation. The model is then applied to evaluate the effectiveness of street design changes at varying demand scenarios. The microsimulation approach was chosen because it allows for the detailed modeling and visualization of the transportation networks, including movements of individual vehicles, bicyclists, and pedestrians. The street design change demonstrated here involves one-way to two-way street conversion, but the framework of network-wide impact evaluation may also be used for complete street conversions. The base conditions network was also tested under different travel demand reduction scenarios (10%, 20%, and 30%) to identify the corridors in the city network in which the tactical urbanism strategies (e.g., open-air dining) may be best accommodated. The study provides framework for the use of a microscopic model as part of a decision support system to evaluate and effectively implement complete streets/tactical urbanism strategies

    Empowering citizens' cognition and decision making in smart sustainable cities

    Get PDF
    © 2019 IEEE. Personal use of this material is permitted. Permission from IEEE must be obtained for all other uses, in any current or future media, including reprinting/republishing this material for advertising or promotional purposes,creating new collective works, for resale or redistribution to servers or lists, or reuse of any copyrighted component of this work in other works.Advances in Internet technologies have made it possible to gather, store, and process large quantities of data, often in real time. When considering smart and sustainable cities, this big data generates useful information and insights to citizens, service providers, and policy makers. Transforming this data into knowledge allows for empowering citizens' cognition as well as supporting decision-making routines. However, several operational and computing issues need to be taken into account: 1) efficient data description and visualization, 2) forecasting citizens behavior, and 3) supporting decision making with intelligent algorithms. This paper identifies several challenges associated with the use of data analytics in smart sustainable cities and proposes the use of hybrid simulation-optimization and machine learning algorithms as an effective approach to empower citizens' cognition and decision making in such ecosystemsPeer ReviewedPostprint (author's final draft

    Managing ubiquitous eco cities: the role of urban telecommunication infrastructure networks and convergence technologies

    Get PDF
    A successful urban management system for a Ubiquitous Eco City requires an integrated approach. This integration includes bringing together economic, socio-cultural and urban development with a well orchestrated, transparent and open decision making mechanism and necessary infrastructure and technologies. Rapidly developing information and telecommunication technologies and their platforms in the late 20th Century improves urban management and enhances the quality of life and place. Telecommunication technologies provide an important base for monitoring and managing activities over wired, wireless or fibre-optic networks. Particularly technology convergence creates new ways in which the information and telecommunication technologies are used. The 21st Century is an era where information has converged, in which people are able to access a variety of services, including internet and location based services, through multi-functional devices such as mobile phones and provides opportunities in the management of Ubiquitous Eco Cities. This paper discusses the recent developments in telecommunication networks and trends in convergence technologies and their implications on the management of Ubiquitous Eco Cities and how this technological shift is likely to be beneficial in improving the quality of life and place. The paper also introduces recent approaches on urban management systems, such as intelligent urban management systems, that are suitable for Ubiquitous Eco Cities

    Big data analytics:Computational intelligence techniques and application areas

    Get PDF
    Big Data has significant impact in developing functional smart cities and supporting modern societies. In this paper, we investigate the importance of Big Data in modern life and economy, and discuss challenges arising from Big Data utilization. Different computational intelligence techniques have been considered as tools for Big Data analytics. We also explore the powerful combination of Big Data and Computational Intelligence (CI) and identify a number of areas, where novel applications in real world smart city problems can be developed by utilizing these powerful tools and techniques. We present a case study for intelligent transportation in the context of a smart city, and a novel data modelling methodology based on a biologically inspired universal generative modelling approach called Hierarchical Spatial-Temporal State Machine (HSTSM). We further discuss various implications of policy, protection, valuation and commercialization related to Big Data, its applications and deployment
    • 

    corecore