1,918 research outputs found

    ARTIFICIAL INTELLIGENCE-ENABLED MULTI-MISSION RESOURCE ALLOCATION TACTICAL DECISION AID

    Get PDF
    The Department of Defense supports many military platforms that execute multiple missions simultaneously. Platforms such as watercraft, aircraft, and land convoys support multiple missions over domains such as air and missile defense, anti-submarine warfare, strike operations, fires in support of ground operations, intelligence sensing and reconnaissance. However, major challenges to the human decision-maker exist in allocating these multi-mission resources such as the growth in battle-tempo, scale, and complexity of available platforms. This capstone study seeks to apply systems engineering to analyze the multi-mission resource allocation (MMRA) problem set to further enable artificial intelligence (AI) and machine learning tools to aid human decision-makers for initial and dynamic re-planning. To approach this problem, the study characterizes inputs and outputs of a potential MMRA process, then analyzes the scalability and complexity across three unique use cases: directed energy convoy protection, aviation support, and a carrier strike group. The critical findings of these diverse use cases were then assessed for similarities and differences to further understand commonalities for a joint AI-enabled MMRA tool.Civilian, Department of the ArmyCivilian, Department of the ArmyCivilian, Department of the NavyApproved for public release. Distribution is unlimited

    Environmental and Statistical Performance Mapping Model for Underwater Acoustic Detection Systems

    Get PDF
    This manuscript describes a methodology to combine environmental models, acoustic signal predictions, statistical detection models and operations research to form a framework for calculating and communicating performance. This methodology has been applied to undersea target detection systems and has come to be known as Performance Surface modeling. The term Performance Surface refers to a geo-spatial representation of the predicted performance of one or more sensors constrained by all-source forecasts for a geophysical area of operations. Recent improvements in ocean, atmospheric and underwater acoustic models, along with advances in parallel computing provide an opportunity to forecast the effects of a complex and dynamic acoustic environment on undersea target detection system performance. This manuscript describes a new process that calculates performance in a straight-forward sonar-equation manner utilizing spatially complex and temporally dynamic environmental models. This performance model is constructed by joining environmental acoustic signal predictions with a detection model to form a probabilistic prediction which is then combined with probabilities of target location to produce conditional, joint and marginal probabilities. These joint and marginal probabilities become the scalar estimates of system performance. This manuscript contains two invited articles recently accepted for publication. The first article describes the Performance Surface model development with sections on current applications and future extensions to a more stochastic model. The second article is written from the operational perspective of a Naval commanding officer with co-authors from the active force. Performance Surface tools have been demonstrated at the Naval Oceanographic Office (NAVOCEANO) and the Naval Oceanographic Anti-Submarine Warfare (ASW) Center (NOAC) in support of recent naval exercises. The model also has recently been a major representation for the performance layer of the Naval Meteorological and Oceanographic Command (NAVMETOCCOM) in its Battlespace on Demand strategy for supporting the Fleet with oceanographic products

    Environmental and Statistical Performance Mapping Model for Underwater Acoustic Detection Systems

    Get PDF
    This manuscript describes a methodology to combine environmental models, acoustic signal predictions, statistical detection models and operations research to form a framework for calculating and communicating performance. This methodology has been applied to undersea target detection systems and has come to be known as Performance Surface modeling. The term Performance Surface refers to a geo-spatial representation of the predicted performance of one or more sensors constrained by all-source forecasts for a geophysical area of operations. Recent improvements in ocean, atmospheric and underwater acoustic models, along with advances in parallel computing provide an opportunity to forecast the effects of a complex and dynamic acoustic environment on undersea target detection system performance. This manuscript describes a new process that calculates performance in a straight-forward sonar-equation manner utilizing spatially complex and temporally dynamic environmental models. This performance model is constructed by joining environmental acoustic signal predictions with a detection model to form a probabilistic prediction which is then combined with probabilities of target location to produce conditional, joint and marginal probabilities. These joint and marginal probabilities become the scalar estimates of system performance. This manuscript contains two invited articles recently accepted for publication. The first article describes the Performance Surface model development with sections on current applications and future extensions to a more stochastic model. The second article is written from the operational perspective of a Naval commanding officer with co-authors from the active force. Performance Surface tools have been demonstrated at the Naval Oceanographic Office (NAVOCEANO) and the Naval Oceanographic Anti-Submarine Warfare (ASW) Center (NOAC) in support of recent naval exercises. The model also has recently been a major representation for the performance layer of the Naval Meteorological and Oceanographic Command (NAVMETOCCOM) in its Battlespace on Demand strategy for supporting the Fleet with oceanographic products

    Adaptable underwater networks: The relation between autonomy and communications

    Get PDF
    This paper discusses requirements for autonomy and communications in maritime environments through two use cases which are sourced from military scenarios: Mine Counter Measures (MCM) and Anti-Submarine Warfare (ASW). To address these requirements, this work proposes a service-oriented architecture that breaks the typical boundaries between the autonomy and the communications stacks. An initial version of the architecture has been implemented and its deployment during a field trial done in January 2019 is reported. The paper discusses the achieved results in terms of system flexibility and ability to address the MCM and ASW requirements

    An overview of the Copernicus C4I architecture

    Get PDF
    The purpose of this thesis is to provide the reader with an overview of the U.S. Navy's Copernicus C4I Architecture. The acronym "C4I" emphasizes the intimate relationship between command, control, communications and intelligence, as well as their significance to the modern day warrior. Never in the history of the U.S> Navy has the importance of an extremely flexible C4I architecture been made more apparent than in the last decade. Included are discussions of the Copernicus concept, its command and control doctrine, its architectural goals and components, and Copernicus-related programs. Also included is a discussion on joint service efforts and the initiatives being conducted by the U.S. Marine Corps, the U.S. Air Force and the U.S. Army. Finally, a discussion of the Copernicus Phase I Requirements Definition Document's compliance with the acquisition process as required by DoD Instruction 5000.2 is presented.http://archive.org/details/overviewofcopern00dearLieutenant, United States NavyApproved for public release; distribution is unlimited

    Post-Westgate SWAT : C4ISTAR Architectural Framework for Autonomous Network Integrated Multifaceted Warfighting Solutions Version 1.0 : A Peer-Reviewed Monograph

    Full text link
    Police SWAT teams and Military Special Forces face mounting pressure and challenges from adversaries that can only be resolved by way of ever more sophisticated inputs into tactical operations. Lethal Autonomy provides constrained military/security forces with a viable option, but only if implementation has got proper empirically supported foundations. Autonomous weapon systems can be designed and developed to conduct ground, air and naval operations. This monograph offers some insights into the challenges of developing legal, reliable and ethical forms of autonomous weapons, that address the gap between Police or Law Enforcement and Military operations that is growing exponentially small. National adversaries are today in many instances hybrid threats, that manifest criminal and military traits, these often require deployment of hybrid-capability autonomous weapons imbued with the capability to taken on both Military and/or Security objectives. The Westgate Terrorist Attack of 21st September 2013 in the Westlands suburb of Nairobi, Kenya is a very clear manifestation of the hybrid combat scenario that required military response and police investigations against a fighting cell of the Somalia based globally networked Al Shabaab terrorist group.Comment: 52 pages, 6 Figures, over 40 references, reviewed by a reade

    Crossbow Volume 1

    Get PDF
    Student Integrated ProjectIncludes supplementary materialDistributing naval combat power into many small ships and unmanned air vehicles that capitalize on emerging technology offers a transformational way to think about naval combat in the littorals in the 2020 time frame. Project CROSSBOW is an engineered systems of systems that proposes to use such distributed forces to provide forward presence to gain and maiantain access, to provide sea control, and to project combat power in the littoral regions of the world. Project CROSSBOW is the result of a yearlong, campus-wide, integrated research systems engineering effort involving 40 student researchers and 15 supervising faculty members. This report (Volume I) summarizes the CROSSBOW project. It catalogs the major features of each of the components, and includes by reference a separate volume for each of the major systems (ships, aircraft, and logistics). It also prresents the results of the mission and campaign analysis that informed the trade-offs between these components. It describes certain functions of CROSSBOW in detail through specialized supporting studies. The student work presented here is technologically feasible, integrated and imaginative. The student project cannot by itself provide definitive designs or analyses covering such a broad topic. It does strongly suggest that the underlying concepts have merit and deserve further serious study by the Navy as it transforms itself

    Implication of FORCEnet on coalition forces

    Get PDF
    The coalition navies of Australia, Canada, New Zealand, United Kingdom and the United States (AUSCANNZUKUS) are in a period of transformation. They are stepping out of the Industrial Age of warfare and into the Informational Age of warfare. Network Centric Warfare (NCW) is the emerging theory to accomplish this undertaking. NCW describes "the combination of strategies, emerging tactics, techniques, and procedures, and organizations that a fully or even partially networked force can employ to create a decisive war fighting advantage." 1 This theory is turned into a concept through Network Centric Operations (NCO) and implemented through the FORCEnet operational construct and architectural framework. The coalition navies are moving in a direction to develop and leverage information more effectively and efficiently. This will lead to an informational advantage that can be used as a combat multiplier to shape and control the environment, so as to dissuade, deter, and decisively defeat any enemy. This analysis was comprised of defining three TTCP AG-6 provided vignettes into ARENA model that captured Coalition ESG configurations at various FORCEnet levels. The results of the analysis demonstrated that enhanced FORCEnet capabilities such as FORCEnet Levels 2 and 4 would satisfy the capability gap for a needed network-centric ESG force that can effectively counter insurgency operations in Maritime warfare. Furthermore, the participating allied navies in the Coalition ESG should pursue acquisition strategies to upgrade their ship platforms in accordance with our recommendation which indicates that FORCEnet Level 2 is the best value.http://archive.org/details/implicationoffor109456926N

    Littoral undersea warfare: a case study in process modelling for functionality and introperability of complex systems

    Get PDF
    The goal of this investigation is to demonstrate the application of a process modelling approach to architect a System of Systems (SoS) capable of conducting Anti-Submarine Warfare (ASW) operations projecting to the year 2025. Process modelling is a methodology for architectural analysis for complex systems whose operation is characterised by ‘processes’ whose sequential execution may be scaled-up to understand overall system behaviour. It is ideally suited to address complexity and interoperability issues of an ASW SoS. New contributions of this work include the successful implementation of a process modelling approach to architect an ASW SoS and a cohesive set of results analysing its operation with future projections to the year 2025. We believe this work may serve as a foundation for future systems engineering research addressing interoperability and performance of complex systems whose function is closely tied to time-dependent processes, with particular application to military and security systems

    MODELLING VIRTUAL ENVIRONMENT FOR ADVANCED NAVAL SIMULATION

    Get PDF
    This thesis proposes a new virtual simulation environment designed as element of an interoperable federation of simulator to support the investigation of complex scenarios over the Extended Maritime Framework (EMF). Extended Maritime Framework is six spaces environment (Underwater, Water surface, Ground, Air, Space, and Cyberspace) where parties involved in Joint Naval Operations act. The amount of unmanned vehicles involved in the simulation arise the importance of the Communication modelling, thus the relevance of Cyberspace. The research is applied to complex cases (one applied to deep waters and one to coast and littoral protection) as examples to validate this approach; these cases involve different kind of traditional assets (e.g. satellites, helicopters, ships, submarines, underwater sensor infrastructure, etc.) interact dynamically and collaborate with new autonomous systems (i.e. AUV, Gliders, USV and UAV). The use of virtual simulation is devoted to support validation of new concepts and investigation of collaborative engineering solutions by providing a virtual representation of the current situation; this approach support the creation of dynamic interoperable immersive framework that could support training for Man in the Loop, education and tactical decision introducing the Man on the Loop concepts. The research and development of the Autonomous Underwater Vehicles requires continuous testing so a time effective approach can result a very useful tool. In this context the simulation can be useful to better understand the behaviour of Unmanned Vehicles and to avoid useless experimentations and their costs finding problems before doing them. This research project proposes the creation of a virtual environment with the aim to see and understand a Joint Naval Scenario. The study will be focusing especially on the integration of Autonomous Systems with traditional assets; the proposed simulation deals especially with collaborative operation involving different types of Autonomous Underwater Vehicles (AUV), Unmanned Surface Vehicles (USV) and UAV (Unmanned Aerial Vehicle). The author develops an interoperable virtual simulation devoted to present the overall situation for supervision considering also the sensor capabilities, communications and mission effectiveness that results dependent of the different asset interaction over a complex heterogeneous network. The aim of this research is to develop a flexible virtual simulation solution as crucial element of an HLA federation able to address the complexity of Extended Maritime Framework (EMF). Indeed this new generation of marine interoperable simulation is a strategic advantage for investigating the problems related to the operational use of autonomous systems and to finding new ways to use them respect to different scenarios. The research deal with the creation of two scenarios, one related to military operations and another one on coastal and littoral protection where the virtual simulation propose the overall situation and allows to navigate into the virtual world considering the complex physics affecting movement, perception, interaction and communication. By this approach, it becomes evident the capability to identify, by experimental analysis within the virtual world, the new solutions in terms of engineering and technological configuration of the different systems and vehicles as well as new operational models and tactics to address the specific mission environment. The case of study is a maritime scenario with a representation of heterogeneous network frameworks that involves multiple vehicles both naval and aerial including AUVs, USVs, gliders, helicopter, ships, submarines, satellite, buoys and sensors. For the sake of clarity aerial communications will be represented divided from underwater ones. A connection point for the latter will be set on the keel line of surface vessels representing communication happening via acoustic modem. To represent limits in underwater communications, underwater signals have been considerably slowed down in order to have a more realistic comparison with aerial ones. A maximum communication distance is set, beyond which no communication can take place. To ensure interoperability the HLA Standard (IEEE 1516 evolved) is adopted to federate other simulators so to allow its extensibility for other case studies. Two different scenarios are modelled in 3D visualization: Open Water and Port Protection. The first one aims to simulate interactions between traditional assets in Extended Maritime Framework (EMF) such as satellite, navy ships, submarines, NATO Research Vessels (NRVs), helicopters, with new generation unmanned assets as AUV, Gliders, UAV, USV and the mutual advantage the subjects involved in the scenario can have; in other word, the increase in persistence, interoperability and efficacy. The second scenario models the behaviour of unmanned assets, an AUV and an USV, patrolling a harbour to find possible threats. This aims to develop an algorithm to lead patrolling path toward an optimum, guaranteeing a high probability of success in the safest way reducing human involvement in the scenario. End users of the simulation face a graphical 3D representation of the scenario where assets would be represented. He can moves in the scenario through a Free Camera in Graphic User Interface (GUI) configured to entitle users to move around the scene and observe the 3D sea scenario. In this way, players are able to move freely in the synthetic environment in order to choose the best perspective of the scene. The work is intended to provide a valid tool to evaluate the defencelessness of on-shore and offshore critical infrastructures that could includes the use of new technologies to take care of security best and preserve themselves against disasters both on economical and environmental ones
    corecore