3,187 research outputs found

    A Chance Constrained Programming Model for Reliable Emergency Vehicles Relocation Problem

    Get PDF
    AbstractEmergency vehicles relocation is one mechanism of increasing preparedness for potential emergencies. This paper addresses the problem of designing reliable emergency vehicles relocation system. Under this respect, we extend the DYNACO model with chance-constrained programming framework for the optimal redeployment of emergency vehicles. The model deals with the availability of emergency vehicles by approximate hypercube. In addition, other random elements including travel time and emergency demand are taken into account in the model. Solution procedure based on genetic algorithm and Monte-Carlo simulation is developed to solve the stochastic model. Computational experiences are reported to illustrate the performance and the effectiveness of the proposed solution

    Intermodal Transfer Coordination in Logistic Networks

    Get PDF
    Increasing awareness that globalization and information technology affect the patterns of transport and logistic activities has increased interest in the integration of intermodal transport resources. There are many significant advantages provided by integration of multiple transport schedules, such as: (1) Eliminating direct routes connecting all origin-destinations pairs and concentrating cargos on major routes; (2) improving the utilization of existing transportation infrastructure; (3) reducing the requirements for warehouses and storage areas due to poor connections, and (4) reducing other impacts including traffic congestion, fuel consumption and emissions. This dissertation examines a series of optimization problems for transfer coordination in intermodal and intra-modal logistic networks. The first optimization model is developed for coordinating vehicle schedules and cargo transfers at freight terminals, in order to improve system operational efficiency. A mixed integer nonlinear programming problem (MINLP) within the studied multi-mode, multi-hub, and multi-commodity network is formulated and solved by using sequential quadratic programming (SQP), genetic algorithms (GA) and a hybrid GA-SQP heuristic algorithm. This is done primarily by optimizing service frequencies and slack times for system coordination, while also considering loading and unloading, storage and cargo processing operations at the transfer terminals. Through a series of case studies, the model has shown its ability to optimize service frequencies (or headways) and slack times based on given input information. The second model is developed for countering schedule disruptions within intermodal freight systems operating in time-dependent, stochastic and dynamic environments. When routine disruptions occur (e.g. traffic congestion, vehicle failures or demand fluctuations) in pre-planned intermodal timed-transfer systems, the proposed dispatching control method determines through an optimization process whether each ready outbound vehicle should be dispatched immediately or held waiting for some late incoming vehicles with connecting freight. An additional sub-model is developed to deal with the freight left over due to missed transfers. During the phases of disruption responses, alleviations and management, the proposed real-time control model may also consider the propagation of delays at further downstream terminals. For attenuating delay propagations, an integrated dispatching control model and an analysis of sensitivity to slack times are presented

    A mathematical programming approach for dispatching and relocating EMS vehicles.

    Get PDF
    We consider the problem of dispatching and relocating EMS vehicles during a pandemic outbreak. In such a situation, the demand for EMS vehicles increases and in order to better utilize their capacity, the idea of serving more than one patient by an ambulance is introduced. Vehicles transporting high priority patients cannot serve any other patient, but those transporting low priority patients are allowed to be rerouted to serve a second patient. We have considered three separate problems in this research. In the first problem, an integrated model is developed for dispatching and relocating EMS vehicles, where dispatchers determine hospitals for patients. The second problem considers just relocating EMS vehicles. In the third problem only dispatching decisions are made where hospitals are pre-specified by patients not by dispatchers. In the first problem, the objective is to minimize the total travel distance and the penalty of not meeting specific constraints. In order to better utilize the capacity of ambulances, we allow each ambulance to serve a maximum of two patients. Considerations are given to features such as meeting the required response time window for patients, batching non-critical and critical patients when necessary, ensuring balanced coverage for all census tracts. Three models are proposed- two of them are linear integer programing and the other is a non-linear programing model. Numerical examples show that the linear models can be solved using general-purpose solvers efficiently for large sized problems, and thus it is suitable for use in a real time decision support system. In the second problem, the goal is to maximize the coverage for serving future calls in a required time window. A linear programming model is developed for this problem. The objective is to maximize the number of census tracts with single and double coverage, (each with their own weights) and to minimize the travel time for relocating. In order to tune the parameters in this objective function, an event based simulation model is developed to study the movement of vehicles and incidents (911 calls) through a city. The results show that the proposed model can effectively increase the system-wide coverage by EMS vehicles even if we assume that vehicles cannot respond to any incidents while traveling between stations. In addition, the results suggest that the proposed model outperforms one of the well-known real time repositioning models (Gendreau et al. (2001)). In the third problem, the objective is to minimize the total travel distance experienced by all EMS vehicles, while satisfying two types of time window constraints. One requires the EMS vehicle to arrive at the patients\u27 scene within a pre-specified time, the other requires the EMS vehicle to transport patients to their hospitals within a given time window. Similar to the first problem, each vehicle can transport maximum two patients. A mixed integer program (MIP) model is developed for the EMS dispatching problem. The problem is proved to be NP-hard, and a simulated annealing (SA) method is developed for its efficient solution. Additionally, to obtain lower bound, a column generation method is developed. Our numerical results show that the proposed SA provides high quality solutions whose objective is close to the obtained lower bound with much less CPU time. Thus, the SA method is suitable for implementation in a real-time decision support system

    Simple and practical optimization approach based to solve a truck load and delivery problem at long haul distances with heterogenous products

    Get PDF
    This paper proposes an optimization based approach for solving the logistic processes of deliveries scheduling and product accommodation during loading with a heterogeneous fleet of vehicles. The approach focuses on the case of products with “low density values” and high heterogeneous volume and weight, and with traveling large distances to different zones, in which transportation costs constitute a important proportion of total logistic costs. The proposed approach consists of a two-phase strategy: The first uses a “Cutting Stock Problem” formulation to define utilization areas inside trucks assigned to each product family. This task is achieved by minimizing the long-haul transportation costs as a function of the vehicle size, considering a set of predefined solutions for feasible and efficient loading obtained as a result of the accumulated experience. The second phase consists of Bin Packing Problem version with a known number of bins, which were previously determined in the first phase of the approach. In this phase, different orders from a set of customers are assigned to each truck by obeying the predefined utilization areas per product category obtained in the first phase while minimizing the number of visits of each truck. The results show that the model addresses the analyzed problem in an efficient manner, which is reflected in reasonable resolution times and costs from a practical implementation perspective. Additionally, it is observed that long-haul delivery costs and vehicle utilization tend to improve with the increase of the utilized number of patterns even when the execution time is incremented.MaestríaMagister en Ingeniería Civi

    Analysing the police patrol routing problem : a review

    Get PDF
    Police patrol is a complex process. While on patrol, police officers must balance many intersecting responsibilities. Most notably, police must proactively patrol and prevent offenders from committing crimes but must also reactively respond to real-time incidents. Efficient patrol strategies are crucial to manage scarce police resources and minimize emergency response times. The objective of this review paper is to discuss solution methods that can be used to solve the so-called police patrol routing problem (PPRP). The starting point of the review is the existing literature on the dynamic vehicle routing problem (DVRP). A keyword search resulted in 30 articles that focus on the DVRP with a link to police. Although the articles refer to policing, there is no specific focus on the PPRP; hence, there is a knowledge gap. A diversity of approaches is put forward ranging from more convenient solution methods such as a (hybrid) Genetic Algorithm (GA), linear programming and routing policies, to more complex Markov Decision Processes and Online Stochastic Combinatorial Optimization. Given the objectives, characteristics, advantages and limitations, the (hybrid) GA, routing policies and local search seem the most valuable solution methods for solving the PPRP

    Cycle Time Analysis For Photolithography Tools In Semiconductor Manufacturing Industry With Simulation Model : A Case Study [TR940. S618 2008 f rb].

    Get PDF
    Perkembangan industri semikonduktor dalam bidang fabrikasi biasanya melibatkan kos pelaburan yang tinggi terutamanya dalam alatan photolithography. The industry of semiconductor wafer fabrication (“fab”) has invested a huge amount of capital on the manufacturing equipments particular in photolithograph

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Improving just-in-time delivery performance of IoT-enabled flexible manufacturing systems with AGV based material transportation

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Autonomous guided vehicles (AGVs) are driverless material handling systems used for transportation of pallets and line side supply of materials to provide flexibility and agility in shop-floor logistics. Scheduling of shop-floor logistics in such systems is a challenging task due to their complex nature associated with the multiple part types and alternate material transfer routings. This paper presents a decision support system capable of supporting shop-floor decision-making activities during the event of manufacturing disruptions by automatically adjusting both AGV and machine schedules in Flexible Manufacturing Systems (FMSs). The proposed system uses discrete event simulation (DES) models enhanced by the Internet-of-Things (IoT) enabled digital integration and employs a nonlinear mixed integer programming Genetic Algorithm (GA) to find near-optimal production schedules prioritising the just-in-time (JIT) material delivery performance and energy efficiency of the material transportation. The performance of the proposed system is tested on the Integrated Manufacturing and Logistics (IML) demonstrator at WMG, University of Warwick. The results showed that the developed system can find the near-optimal solutions for production schedules subjected to production anomalies in a negligible time, thereby supporting shop-floor decision-making activities effectively and rapidly

    Modelling of dual-cycle strategy for container storage and vehicle scheduling problems at automated container terminals

    Get PDF
    This study proposes a new approach to determine the dispatching rules of AGVs and container storage locations, considering both unloading and loading processes simultaneously. We formulate this problem as a mixed integer programming model, aiming to minimise the ship’s berth time. Optimal solutions can be obtained in small sizes, however, large-sized problems are hard to solve optimally in a reasonable time. Therefore, a heuristic method, i.e. genetic algorithm is designed to solve the problem in large sizes. A series of numerical experiments are carried out to evaluate the effectiveness of the integration approach and algorithm
    corecore