99,033 research outputs found

    Making asset investment decisions for wastewater systems that include sustainability

    Get PDF
    Effective integrated water management is a key component of the World Water Vision and the way in which aspirations for water equity may be realized. Part of the vision includes the promotion of sustainability of water systems and full accountability for their interaction with other urban systems. One major problem is that “sustainability” remains an elusive concept, although those involved with the provision of urban wastewater systems now recognize that decisions involving asset investment should use the “triple bottom line” approach to society, the economy, and the environment. The Sustainable Water Industry Asset Resource Decisions project has devised a flexible and adaptable framework of decision support processes that can be used to include the principles of sustainability more effectively. Decision mapping conducted at the outset of the project has shown that only a narrow range of criteria currently influence the outcome of asset investment decisions. This paper addresses the concepts of sustainability assessment and presents two case studies that illustrate how multicriteria decision support systems can enhance the assessment of the relative sustainability of a range of options when decisions are being made about wastewater asset investment

    Integrating process and factor understanding of environmental innovation by water utilities

    Get PDF
    Innovations in technology and organisations are central to enabling the water sector to adapt to major environmental changes such as climate change, land degradation or drinking water pollution. While there are literatures on innovation as a process and on the factors that influence it, there is little research that integrates these. Development of such an integrated understanding of innovation is central to understanding how policy makers and organisations can stimulate and direct environmental innovation. In the research reported here a framework is developed that enables such an integrated analysis of innovation process and factors. From research interviews and the literature twenty factors were identified that affect the five stages of the environmental innovation process in English and Welsh water utilities. The environmental innovations investigated are measures taken by water utilities to reduce or prevent pollution in drinking water catchments rather than technical measures to treat water. These Source Control Interventions are similar to other environmental innovations, such as ecosystem and species conservation, in that they emphasise the mix of technology, management and engagement with multiple actors. Results show that in water utilities direct performance regulation and regulation that raises awareness of a ‘performance’ gap as a ‘problem’ can stimulate innovation, but only under particular organisational, natural physical and regulatory conditions. The integrated framework also suggests that while flexible or framework legislation (e.g. Water Framework Directive) does not stimulate innovation in itself, it has shaped the option spaces and characteristics of innovations selected towards source control instead of technical end-of-pipe solutions

    Decision support system for the long-term city metabolism planning problem

    Get PDF
    A Decision Support System (DSS) tool for the assessment of intervention strategies (Alternatives) in an Urban Water System (UWS) with an integral simulation model called “WaterMetÂČ” is presented. The DSS permits the user to identify one or more optimal Alternatives over a fixed long-term planning horizon using performance metrics mapped to the TRUST sustainability criteria (Alegre et al., 2012). The DSS exposes lists of in-built intervention options and system performance metrics for the user to compose new Alternatives. The quantitative metrics are calculated by the WaterMetÂČ model and further qualitative or user-defined metrics may be specified by the user or by external tools feeding into the DSS. A Multi-Criteria Decision Analysis (MCDA) approach is employed within the DSS to compare the defined Alternatives and to rank them with respect to a pre-specified weighting scheme for different Scenarios. Two rich, interactive Graphical User Interfaces, one desktop and one web-based, are employed to assist with guiding the end user through the stages of defining the problem, evaluating and ranking Alternatives. This mechanism provides a useful tool for decision makers to compare different strategies for the planning of UWS with respect to multiple Scenarios. The efficacy of the DSS is demonstrated on a northern European case study inspired by a real-life urban water system for a mixture of quantitative and qualitative criteria. The results demonstrate how the DSS, integrated with an UWS modelling approach, can be used to assist planners in meeting their long-term, strategic level sustainability objectives

    Sustainable urban development in practice:the SAVE concept

    Get PDF
    The need for sustainable development of the urban environment presents the research community with a number of challenges and opportunities. A considerable volume of research has been undertaken into the constituent parts of this complex problem and a number of tool kits and methodologies have been developed to enable and encourage the application of specific aspects of research in practice. However, there is limited evidence of the holistic integration of the body of knowledge arising from the research within real-life decision-making practices. In this paper we present an overview of the existing body of knowledge relating to sustainable development of the urban environment and propose a generic framework for its integration within current practices. This framework recognises the need to: understand social, economic, and environmental issues; understand the decision-making processes; provide a means of measurement, assessment, or valuation of the issues; provide analytical methods for the comparative assessment of complex data to enable an evaluation of strategies and design options and to communicate effectively throughout the process with a wide range of stakeholders. The components of a novel sustainability assessment, visualisation and enhancement (SAVE) framework, developed by the authors to ‘operationalise’ the body of knowledge are presented and justified. These include: decision-mapping methods to identify points of intervention; indicator identification and measurement approaches; appropriate mathematical and analytical tools and an interactive simulation and visualisation platform which integrates and communicates complex multivariate information to diverse stakeholder groups. We report on the application of the SAVE framework to a major urban development project and reflect on its current and potential impact on the development. Conclusions are also drawn about its general applicability

    Operationalizing the circular city model for naples' city-port: A hybrid development strategy

    Get PDF
    The city-port context involves a decisive reality for the economic development of territories and nations, capable of significantly influencing the conditions of well-being and quality of life, and of making the Circular City Model (CCM) operational, preserving and enhancing seas and marine resources in a sustainable way. This can be achieved through the construction of appropriate production and consumption models, with attention to relations with the urban and territorial system. This paper presents an adaptive decision-making process for Naples (Italy) commercial port's development strategies, aimed at re-establishing a sustainable city-port relationship and making Circular Economy (CE) principles operative. The approach has aimed at implementing a CCM by operationalizing European recommendations provided within both the Sustainable Development Goals (SDGs) framework-specifically focusing on goals 9, 11 and 12-and the Maritime Spatial Planning European Directive 2014/89, to face conflicts about the overlapping areas of the city-port through multidimensional evaluations' principles and tools. In this perspective, a four-step methodological framework has been structured applying a place-based approach with mixed evaluation methods, eliciting soft and hard knowledge domains, which have been expressed and assessed by a core set of Sustainability Indicators (SI), linked to SDGs. The contribution outcomes have been centred on the assessment of three design alternatives for the East Naples port and the development of a hybrid regeneration scenario consistent with CE and sustainability principles. The structured decision-making process has allowed us to test how an adaptive approach can expand the knowledge base underpinning policy design and decisions to achieve better outcomes and cultivate a broad civic and technical engagement, that can enhance the legitimacy and transparency of policies

    Stocktaking review for the Livestock CRP with focus on Sonla, NW Vietnam

    Get PDF

    An Integrated Assessment Framework for Water Resources Management: A DSS Tool and a Pilot Study Application

    Get PDF
    Decision making for the management of water resources is a complex and difficult task. This is due to the complex socio-economic system that involves a large number of interest groups pursuing multiple and conflicting objectives, within an often intricate legislative framework. Several Decision Support Systems have been developed but very few have indeed proved to be effective and truly operational. MULINO (Multisectoral, Integrated and Operational Decision Support System for Sustainable Use of Water Resources at the Catchment Scale) is a project funded under the Fifth Framework Programme of the European Research and the key action line dedicated to operational management schemes and decision support system for sustainable use of water resources. The MULINO DSS (mDSS) integrates hydrological models with multi-criteria decision methods and adopts the DPSIR (Driving Force – Pressure – State – Impact – Response) framework developed by the European Environment Agency. The DPSIR was converted from a static reporting scheme into a dynamic framework for integrated assessment modelling (IAM) and multi-criteria evaluation procedures. This paper presents the methodological framework and the intermediate results of the mDSS tool through its application in a pilot study area located in the Watershed of the Lagoon of Venice.Integrated water resources management, Spatial decision-making, Decision support system, Catchment, Environmental modelling

    The Glasgow sustainable urban drainage system management project: Case studies (Belvidere hospital and Celtic FC stadium areas)

    Get PDF
    The Glasgow Sustainable Urban Drainage System (SUDS) Management Project satisfies the first phase of the Glasgow Surface Water Management Project. This is Glasgow City Council’s contribution to the Transformation of Rural and Urban Spatial Structure (TRUST) project, one of the European Union’s (EU) interregional (INTERREG IIIB) funded research projects. The remit of this EU project comprises also other representative regions in Europe. The project shows also how SUDS can contribute to the overall catchment dynamics of cities such as Glasgow, ultimately relieving stress on the current predominantly combined sewer system. Fifty-seven sites within 46 areas of Glasgow were identified for investigation. A detailed soil chemistry analysis, a preliminary SUDS feasibility assessment and a desk study relating to historical planning issues that may be relevant for subsequent future development and regeneration options were undertaken. Detailed design and management guidelines were then drafted for selected representative demonstration areas (Belvidere Hospital and Celtic FC Stadium Areas) of high public and property developers interest, and education value. A combination of infiltration trenches or swales with ponds or underground storage were the most likely SUDS options for the majority of the demonstration areas. Soil contamination issues were considered when selecting SUDS because heavy metals such as lead and zinc can cause environmental health problems
    • 

    corecore