94 research outputs found

    Constraint Satisfaction Problems over Numeric Domains

    Get PDF
    We present a survey of complexity results for constraint satisfaction problems (CSPs) over the integers, the rationals, the reals, and the complex numbers. Examples of such problems are feasibility of linear programs, integer linear programming, the max-atoms problem, Hilbert\u27s tenth problem, and many more. Our particular focus is to identify those CSPs that can be solved in polynomial time, and to distinguish them from CSPs that are NP-hard. A very helpful tool for obtaining complexity classifications in this context is the concept of a polymorphism from universal algebra

    Average-energy games

    Get PDF
    Two-player quantitative zero-sum games provide a natural framework to synthesize controllers with performance guarantees for reactive systems within an uncontrollable environment. Classical settings include mean-payoff games, where the objective is to optimize the long-run average gain per action, and energy games, where the system has to avoid running out of energy. We study average-energy games, where the goal is to optimize the long-run average of the accumulated energy. We show that this objective arises naturally in several applications, and that it yields interesting connections with previous concepts in the literature. We prove that deciding the winner in such games is in NP inter coNP and at least as hard as solving mean-payoff games, and we establish that memoryless strategies suffice to win. We also consider the case where the system has to minimize the average-energy while maintaining the accumulated energy within predefined bounds at all times: this corresponds to operating with a finite-capacity storage for energy. We give results for one-player and two-player games, and establish complexity bounds and memory requirements.Comment: In Proceedings GandALF 2015, arXiv:1509.0685

    05301 Abstracts Collection -- Exact Algorithms and Fixed-Parameter Tractability

    Get PDF
    From 24.07.05 to 29.07.05, the Dagstuhl Seminar 05301 ``Exact Algorithms and Fixed-Parameter Tractability\u27\u27 was held in the International Conference and Research Center (IBFI), Schloss Dagstuhl. This is a collection of abstracts of the presentations given during the seminar

    Separating Regular Languages with First-Order Logic

    Full text link
    Given two languages, a separator is a third language that contains the first one and is disjoint from the second one. We investigate the following decision problem: given two regular input languages of finite words, decide whether there exists a first-order definable separator. We prove that in order to answer this question, sufficient information can be extracted from semigroups recognizing the input languages, using a fixpoint computation. This yields an EXPTIME algorithm for checking first-order separability. Moreover, the correctness proof of this algorithm yields a stronger result, namely a description of a possible separator. Finally, we generalize this technique to answer the same question for regular languages of infinite words

    Why Philosophers Should Care About Computational Complexity

    Get PDF
    One might think that, once we know something is computable, how efficiently it can be computed is a practical question with little further philosophical importance. In this essay, I offer a detailed case that one would be wrong. In particular, I argue that computational complexity theory---the field that studies the resources (such as time, space, and randomness) needed to solve computational problems---leads to new perspectives on the nature of mathematical knowledge, the strong AI debate, computationalism, the problem of logical omniscience, Hume's problem of induction, Goodman's grue riddle, the foundations of quantum mechanics, economic rationality, closed timelike curves, and several other topics of philosophical interest. I end by discussing aspects of complexity theory itself that could benefit from philosophical analysis.Comment: 58 pages, to appear in "Computability: G\"odel, Turing, Church, and beyond," MIT Press, 2012. Some minor clarifications and corrections; new references adde

    Relation-changing modal logics

    Get PDF
    Tesis (Doctor en Cs. de la Computación)--Universidad Nacional de Córdoba, Facultad de Matemática, Astronomía y Física, 2014.En esta tesis investigamos operadores modales dinámicos que pueden cambiar el modelo durante la evaluación de una fórmula. En particular, extendemos el lenguaje modal básico con modalidades que son capaces de invertir, borrar o agregar pares de elementos relacionados. Estudiamos la versión local de los operadores (es decir,la realización de modificaciones desde el punto de evaluación) y la versión global(cambiar arbitrariamente el modelo). Investigamos varias propiedades de los lenguajes introducidos, desde un punto de vista abstracto. En primer lugar, se introduce la semántica formal de los modificadores de modelo, e inmediatamente se introduce una noción de bisimulación. Las bisimulaciones son una herramienta importante para investigar el poder expresivo de los lenguajes introducidos en esta tesis. Se demostró que todas los lenguajes son incomparables entre sí en términos de poder expresivo (a excepción de los dos versiones de swap, aunque conjeturamos que también ́en son incomparables). Continuamos por investigar el comportamiento computacional de este tipo de operadores. En primer lugar, demostramos que el problema de satisfactibilidad para las versiones locales de las lógicas que cambian la relación que investigamos es indecidible. También demostramos que el problema de model checking es PSPACE-completo para las seis lógicas. Finalmente, investigamos model checking fijando el modelo y fijando la fórmula (problemas conocidos como complejidad de fórmula y complejidad del programa, respectivamente). Es posible también definir métodos para comprobar satisfactibilidad que no necesariamente terminan. Introducimos métodos de tableau para las lógicas que cambian las relaciones y demostramos que todos estos métodos son correctos y completos y mostramos algunos aplicaciones. En la última parte de la tesis, se discute un contexto concreto en el que pueden aplicarse las lógicas modales que cambian la relación: Lógicas Dinámicas Epistémicas (DEL, por las siglas en inglés). Definimos una lógica que cambia la relación capaz de codificar DEL, e investigamos su comportamiento computacional.In this thesis we study dynamic modal operators that can change the model during the evaluation of a formula. In particular, we extend the basic modal language with modalities that are able to swap, delete or add pairs of related elements of the domain. We call the resulting logics Relation-Changing Modal Logics. We study local version of the operators (performing modifications from the evaluation point) and global version (changing arbitrarily edges in the model). We investigate several properties of the given languages, from an abstract point of view. First, we introduce the formal semantics of the model modifiers, afterwards we introduce a notion of bisimulation. Bisimulations are an important tool to investigate the expressive power of the languages introduced in this thesis. We show that all the languages are incomparable among them in terms of expressive power (except for the two versions of swap, which we conjecture are also incomparable). We continue by investigating the computational behaviour of this kind of operators. First, we prove that the satisfiability problem for some of the relation-changing modal logics we investigate is undecidable. Then, we prove that the model checking problem is PSpace-complete for the six logics. Finally, we investigate model checking fixing the model and fixing the formula (problems known as formula and program complexity, respectively). We show that it is possible to define complete but non-terminating methods to check satisfiability. We introduce tableau methods for relation-changing modal logics and we prove that all these methods are sound and complete, and we show some applications. In the last part of the thesis, we discuss a concrete context in which we can apply relation-changing modal logics: Dynamic Epistemic Logics (DEL). We motivate the use of the kind of logics that we investigate in this new framework, and we introduce some examples of DEL. Finally, we define a new relation-changing modal logic that embeds DEL and we investigate its computational behaviour.Fil: Fervari, Raúl Alberto. Universidad Nacional de Córdoba. Facultad de Matemática, Astronomía, Física; Argentina

    Scheduling with AND/OR precedence constraints

    Get PDF
    In many scheduling applications it is required that the processing of some job must be postponed until some other job, which can be chosen from a pre-given set of alternatives, has been completed. The traditional concept of precedence constraints fails to model such restrictions. Therefore, the concept has been generalized to so-called AND/OR precedence constraints which can cope with this kind of requirement

    Monadic second-order definable graph orderings

    Full text link
    We study the question of whether, for a given class of finite graphs, one can define, for each graph of the class, a linear ordering in monadic second-order logic, possibly with the help of monadic parameters. We consider two variants of monadic second-order logic: one where we can only quantify over sets of vertices and one where we can also quantify over sets of edges. For several special cases, we present combinatorial characterisations of when such a linear ordering is definable. In some cases, for instance for graph classes that omit a fixed graph as a minor, the presented conditions are necessary and sufficient; in other cases, they are only necessary. Other graph classes we consider include complete bipartite graphs, split graphs, chordal graphs, and cographs. We prove that orderability is decidable for the so called HR-equational classes of graphs, which are described by equation systems and generalize the context-free languages
    corecore