694 research outputs found

    Strategies for maintenance management of railway track assets

    Get PDF
    M.Ing. (Engineering Management)Abstract: Population growth and environmental issues are revitalizing the railway sector in a tremendous way. An increase in frequency of passenger traffic and rising loads of freight trains has an impact on dynamic railway track properties and components thereof. The challenge from the railway fraternity is to rise to the challenge by ensuring a safe, reliable and affordable mode of transport. The purpose of this research is to investigate the capacity needed to meet demand by maintaining the track components of the railway infrastructure cost effectively. The railway track is the most critical in terms of safety, influence on maintenance costs, availability and reliability of the train service. Profillidis (2012) highlights the fact that track maintenance expenses represent a significant percentage of total railway infrastructure expenses. In literature, different maintenance strategies, approaches and concepts are discussed in light with arguments raised by different scholars and researchers. The main research methodology utilised was the case study on maintenance strategies from different countries where data was mostly available. The reason for the chosen method was to standardise the research method across different countries as this made it easy to obtain the findings and arrive at recommendations of the research. The broader findings from different maintenance strategies were that the track maintenance approach still has to evolve from working in silos to working in a system that acknowledges that decisions taken from other departments can affect the quality of maintenance in future. The deterioration of the track system is mostly affected by the initial quality of the railway track after commissioning due to workmanship and track design, maintenance approach, type of rolling stock tonnages, speed of rolling stock, and environmental related issues. Design phase of the track acknowledges the systems thinking approach for quality and structural integrity. However, more can still be done to adopt approaches that foster inter-departmental coordination in the maintenance phase of the railway track asset lifecycle. Transnet faces a challenge of fulfilling its obligation by providing quality and cost effective maintenance to increase the reliability, affordability, availability and safety of its infrastructure with the ever-increasing freight volumes. The traditional approach of maintaining railway track assets does not bring in required outcomes that ensure high quality and cost effective maintenance as required by high intensity asset utilisation. Data collected from the..

    Numerical techniques for optimising rail grinding

    Get PDF
    Grinding of rails is a technique widely used within the railway industry to balance the degradation of the condition of the rail with the required performance of the rail. The principal focus of this research is the impact of wear and rolling contact fatigue (RCF) cracks on structural integrity of rails, and how rail grinding affects this relationship. A numerical model which predicts growth of RCF-initiated cracks in rails has been adapted to take into account periodic grinding of the surface of the rail. The suitability of some of the simplifying assumptions of the adapted model, referred to as the Grinding Model, has been examined with a physical test program, using full scale rail vehicles and track. This test program studied the persistence of the characteristic surface roughness of the rail generated by grinding, and was carried out to determine whether the effect of this roughness on crack growth can be neglected in the Grinding Model. The Grinding Model has been used to predict crack size, in order to investigate the effect of different grinding strategies, consisting of a depth of grinding applied at a certain interval during a representative pattern of rail vehicle traffic over the rail. The use of the Grinding Model to find grinding strategies which match an optimum criterion has been demonstrated. The applicability of this optimisation technique and the model in its current state of development, to the specification of rail grinding operations, in the context of maximising safe rail life and minimising rail life cycle cost, is discussed.EThOS - Electronic Theses Online ServiceEngineering and Physical Sciences Research CouncilGBUnited Kingdo

    Development of a risk-based maintenance (RBM) strategy for sewerage pumping station network

    Get PDF
    Industries have been facing ever-increasing challenges to do more with less under ongoing budget constraints. They are pushing the boundary by challenging the OEM recommended maintenance intervals and relaxing or tightening based on where it is needed. This is also evident in water sector where industries are trying to do targeted maintenance based on balancing costs, performances and risks. The unexpected failures, the down time associated with such failures, the environmental overflows and, the increasing maintenance costs are major challenges all wastewater reticulation and distribution networks. Industries have been working hard to increase the availability of equipment and reduce the life-cycle cost without compromising safety and environmental targets. Risk-based maintenance (RBM) strategy is useful for allocation of maintenance resources where first allocation occurs to the highest risk item and progressively allocated till it reached budget limits. This paper is based on findings from a study covering 186 sewerage pumping stations of Townsville Water in North of Queensland in Australia. This study covered identifying the critical subsystems and mitigating the risks of failure of those subsystems. Implementation of risk based maintenance strategy was useful in further enhancing reliability and reduction of maintenance costs. © 2019 IEEE.E

    Productivity improvement though OEE measurement : a TPM case study for meat processing plant in Australia

    Get PDF
    Fluctuating demands and increased competition in Australia and Asian countries have been putting more pressure on plants for packaged meat products in Australia. Total Productive Maintenance (TPM) was seen a solution and is currently being implemented within a major meat processing facility in Melbourne, Australia for achieving high Overall Equipment Effectiveness (OEE). Concerns were raised by board of directors due to OEE targets not meant. TPM was initially applied in key areas of the business, thermoforming and packaging for reducing wastes and further enhancing productivity and quality. It is now being rolled out to other sections of the plant. Data collected from fifty-two weeks of production has been analysed and recommendations made to achieve OEE targets for the R145 production line. Risk based maintenance was applied to control adverse effects of packaging quality which significantly influences shelf life. Shelf life of a modified atmosphere packaged product assures safety for consumption of meat products by consumers. Risk based maintenance considered asset failure probabilities, impacts on quality and availability of spare parts. Reliability Centred Maintenance (RCM) resulted in a Risk score for each maintenance activity and as a component was used for TPM program. Findings from this study have been passed on to the meat processing facility for implementation in the entire plant.E

    Research on the System Safety Management in Urban Railway

    Get PDF
    Nowadays, rail transport has become one of the most widely utilised forms of transport thanks to its high safety level, large capacity, and cost-effectiveness. With the railway network's continuous development, including urban rail transit, one of the major areas of increasing attention and demand is ensuring safety or risk management in operation long-term remains for the whole life cycle by scientific tools, management of railway operation (Martani 2017), specifically in developed and developing countries like Vietnam. The situation in Vietnam demonstrates that the national mainline railway network has been built and operated entirely in a single narrow gauge (1000mm) since the previous century, with very few updates of manual operating technology. This significantly highlights that up to now, the conventional technique for managing the safety operation in general, and collision in particular, of the current Vietnamese railway system, including its subsystems, is only accident statistics which is not a scientific-based tool as the others like risk identify and analyse methods, risk mitigation…, that are already available in many countries. Accident management of Vietnam Railways is limited and responsible for accident statistics analysis to avoid and minimise the harm caused by phenomena that occur only after an accident. Statistical analysis of train accident case studies in Vietnam railway demonstrates that, because hazards and failures that could result in serious system occurrences (accidents and incidents) have not been identified, recorded, and evaluated to conduct safety-driven risk analysis using a well-suited assessment methodology, risk prevention and control cannot be achieved. Not only is it hard to forecast and avoid events, but it may also raise the chance and amount of danger, as well as the severity of the later effects. As a result, Vietnam's railway system has a high number of accidents and failure rates. For example, Vietnam Rail-ways' mainline network accounted for approximately 200 railway accidents in 2018, a 3% increase over the previous year, including 163 collisions between trains and road vehicles/persons, resulting in more than 100 fatalities and more than 150 casualties; 16 accidents, including almost derailments, the signal passed at danger… without fatality or casual-ty, but significant damage to rolling stock and track infrastructure (VR 2021). Focusing and developing a new standardised framework for safety management and availability of railway operation in Vietnam is required in view of the rapid development of rail urban transport in the country in recent years (VmoT 2016; VmoT 2018). UMRT Line HN2A in southwest Hanoi is the country's first elevated light rail transit line, which was completed and officially put into revenue service in November 2021. This greatly highlights that up to the current date, the UMRT Line HN2A is the first and only railway line in Vietnam with operational safety assessment launched for the first time and long-term remains for the whole life cycle. The fact that the UMRT Hanoi has a large capacity, more complicated rolling stock and infrastructure equipment, as well as a modern communica-tion-based train control (CBTC) signalling system and automatic train driving without the need for operator intervention (Lindqvist 2006), are all advantages. Developing a compatible and integrated safety management system (SMS) for adaption to the safety operating requirements of this UMRT is an important major point of concern, and this should be proven. In actuality, the system acceptance and safety certification phase for Metro Line HN2A prolonged up to 2.5 years owing to the identification of difficulties with noncompliance to safety requirements resulting from inadequate SMS documents and risk assessment. These faults and hazards have developed during the manufacturing and execution of the project; it is impossible to go back in time to correct them, and it is also impossible to ignore the project without assuming responsibility for its management. At the time of completion, the HN2A metro line will have required an expenditure of up to $868 million, thus it is vital to create measures to prevent system failure and assure passenger safety. This dissertation has reviewed the methods to solve the aforementioned challenges and presented a solution blueprint to attain the European standard level of system safety in three-phase as in the following: • Phase 1: applicable for lines that are currently in operation, such as Metro Line HN2A. Focused on operational and maintenance procedures, as well as a training plan for railway personnel, in order to enhance human performance. Complete and update the risk assessment framework for Metro Line HN2A. The dissertation's findings are described in these applications. • Phase 2: applicable for lines that are currently in construction and manufacturing, such as Metro Line HN3, Line HN2, HCMC Line 1 and Line 2. Continue refining and enhancing engineering management methods introduced during Phase 1. On the basis of the risk assessment by manufacturers (Line HN3, HCMC Line 2 with European manufacturers) and the risk assessment framework described in Chapter 4, a risk management plan for each line will be developed. Building Accident database for risk assessment research and development. • Phase 3: applicable for lines that are currently in planning. Enhance safety requirements and life-cycle management. Building a proactive Safety Culture step by step for the railway industry. This material is implemented gradually throughout all three phases, beginning with the creation of the concept and concluding with an improvement in the attitude of railway personnel on the HN2A line. In addition to this overview, Chapters 4 through Chapter 9 of the dissertation include particular solutions for Risk assessment, Vehicle and Infrastructure Maintenance methods, Inci-dent Management procedures, and Safety Culture installation. This document focuses on constructing a system safety concept for railway personnel, providing stringent and scientific management practises to assure proper engineering conditions, to manage effectively the metro line system, and ensuring passenger safety in Hanoi's metro operatio

    Characterisation and probability of detection analysis of rolling contact fatigue cracks in rails using eddy current pulsed thermography

    Get PDF
    PhD ThesisWith transportation volumes continuously increasing, railway networks are now facing problems of greater axle loads and increasing vehicle speeds. The most direct consequence is the initiation of rolling contact fatigue (RCF) defects in rails, which have become safety issues for all types of railway systems and received more attention due to lack of timely examination and management. Among different RCF defects, the RCF crack probably presents the biggest hazard in rails. Detection and characterisation of RCF cracks aim to provide detailed guidelines for safety management and preventative grinding. Unfortunately, current nondestructive testing and evaluation techniques are still facing several challenges and research gaps. One outstanding challenge is the characterisation of RCF cracks under their complex geometries and clustered distributions. One major research gap is how to evaluate the probabilistic performance in crack characterisation via a proper framework. By combining the advantages of eddy current pulse excitation and infrared thermography, this thesis proposes the use of eddy current pulsed thermography (ECPT) technique to address the detection and characterisation of RCF cracks in rails. To quantitatively investigate the ECPT’s performance in crack characterisation, a performance evaluation framework based on probability of detection (POD) analysis is proposed. The major contributions of the thesis are summarised as follows: (1) implementations of three-dimensional FEM models and a lab-based ECPT system for investigating the characterisation of RCF cracks under clustered distributions and geometric influences; (2) temporal/spatial-thermal-feature-based ECPT for angular slots and RCF cracks detection and characterisation; (3) investigations into the capability and the performance of ECPT for characterising angular slots and natural RCF cracks via a POD analysis framework. The thesis concludes that the proposed feature-based ECPT system can characterise RCF cracks in both light and moderate stages. Based on feature comparison and POD evaluation, tempo-spatial-based patterns are better fits for pocket length characterisation. Temporal domain-based features show better performances for inclination angle characterisation. A spatial domain-based feature, SST, can characterise vertical depths with reasonable POD values. One tempo-spatial-based pattern at the early heating stage, IET-PCA, gives the best performance for characterising surface lengths. Still, several issues need to be further investigated in future work, such as feature selection for crack characterisation, three-dimensional reconstruction of RCF cracks, model-assisted POD frameworks for improving the effectiveness of POD analysis with a limited number of physical specimens

    Digital unique component manufacturing through direct and indirect additive manufacturing

    Get PDF
    The objective of this study is to define an optimum additive manufacturing process which incorporates not only low volume production and short delivery time but also missing, or defective documentation of the industrial components. This inevitably requires the integration of digitization through reverse engineering and state of the art direct and indirect additive manufacturing methods as these are built upon the fundamentals of lead time and cost efficiency which complement business potentials. The work was commissioned by Outotec (Finland) Oy and Aalto University. The data of exemplary components was provided by Outotec (Finland) Oy. The digitization measures and the ISO/ASTM standard additive manufacturing methods were explored and an integrated screening and design process was developed. Cost and lead time analyses were performed in correspondence to exemplary components and their relative business advantages against conventional manufacturing methods were discovered. In addition, performance of two exemplary components was evaluated via additive manufacturing enabled optimization studies. In order to validate and verify the suitability of the manufactured materials according to the predefined standards of Outotec (Finland) Oy, corrosion tests and tensile tests were performed. As a result of this thesis, an additive manufacturing integrated screening algorithm and design process is developed through which costs and lead times of 15 industrial components are evaluated and are utilized for good advantage. In addition, design for additive manufacturing is used to enhance the performance of two industrial components and prototypes are manufactured in order to provide proof of concept. Finally, it is discovered that additively manufactured Stainless Steel 316L is not as corrosion resistant compared to wrought alloys of EN 1.4404 and EN 1.4432 in very aggressive corrosion environments and it has an ultimate tensile strength of approximately 595 MPa with 13% anisotropy in favour of horizontal print orientation. Whereas, additively manufactured Titanium Ti64 is corrosion resistant with respect to its bulk material with an ultimate tensile strength of approximately 1100 MPa containing 5% anisotropy in favour of horizontal print orientation. Overall, this study provided a fundamental workflow for implementation of industrial additive manufacturing for higher production efficiency
    • …
    corecore