472 research outputs found

    A Hand-Based Biometric Verification System Using Ant Colony Optimization

    Get PDF
    This paper presents a novel personal authentication system using hand-based biometrics, which utilizes internal (beneath the skin) structure of veins on the dorsal part of the hand and the outer shape of the hand. The hand-vein and the hand-shape images can be simultaneously acquired by using infrared thermal and digital camera respectively. A claimed identity is authenticated by integrating these two traits based on the score-level fusion in which four fusion rules are used for the integration. Before their fusion, each modality is evaluated individually in terms of error rates and weights are assigned according to their performance. In order to achieve an adaptive security in the proposed bimodal system, an optimal selection of fusion parameters is required. Hence, Ant Colony Optimization (ACO) is employed in the bimodal system to select the weights and also one out of the four fusion rules optimally for the adaptive fusion of the two modalities to meet the user defined security levels. The databases of hand-veins and the hand-shapes consisting of 150 users are acquired using the peg-free imaging setup. The experimental results show genuine acceptance rate (GAR) of 98% at false acceptance rate (FAR) of 0.001% and the system has the potential for any online personal authentication based application.

    Multispectral Palmprint Encoding and Recognition

    Full text link
    Palmprints are emerging as a new entity in multi-modal biometrics for human identification and verification. Multispectral palmprint images captured in the visible and infrared spectrum not only contain the wrinkles and ridge structure of a palm, but also the underlying pattern of veins; making them a highly discriminating biometric identifier. In this paper, we propose a feature encoding scheme for robust and highly accurate representation and matching of multispectral palmprints. To facilitate compact storage of the feature, we design a binary hash table structure that allows for efficient matching in large databases. Comprehensive experiments for both identification and verification scenarios are performed on two public datasets -- one captured with a contact-based sensor (PolyU dataset), and the other with a contact-free sensor (CASIA dataset). Recognition results in various experimental setups show that the proposed method consistently outperforms existing state-of-the-art methods. Error rates achieved by our method (0.003% on PolyU and 0.2% on CASIA) are the lowest reported in literature on both dataset and clearly indicate the viability of palmprint as a reliable and promising biometric. All source codes are publicly available.Comment: Preliminary version of this manuscript was published in ICCV 2011. Z. Khan A. Mian and Y. Hu, "Contour Code: Robust and Efficient Multispectral Palmprint Encoding for Human Recognition", International Conference on Computer Vision, 2011. MATLAB Code available: https://sites.google.com/site/zohaibnet/Home/code

    Fingerprint recognition based on shark smell optimization and genetic algorithm

    Get PDF
    Fingerprint recognition is a dominant form of biometric due to its distinctiveness. The study aims to extract and select the best features of fingerprint images, and evaluate the strength of the Shark Smell Optimization (SSO) and Genetic Algorithm (GA) in the search space with a chosen set of metrics. The proposed model consists of seven phases namely, enrollment, image preprocessing by using weighted median filter, feature extraction by using SSO, weight generation by using Chebyshev polynomial first kind (CPFK), feature selection by using GA, creation of a user’s database, and matching features by using Euclidean distance (ED). The effectiveness of the proposed model’s algorithms and performance is evaluated on 150 real fingerprint images that were collected from university students by the ZKTeco scanner at Sulaimani city, Iraq. The system’s performance was measured by three renowned error rate metrics, namely, False Acceptance Rate (FAR), False Rejection Rate (FRR), and Correct Verification Rate (CVR). The experimental outcome showed that the proposed fingerprint recognition model was exceedingly accurate recognition because of a low rate of both FAR and FRR, with a high CVR percentage gained which was 0.00, 0.00666, and 99.334%, respectively. This finding would be useful for improving biometric secure authentication based fingerprint. It is also possibly applied to other research topics such as fraud detection, e-payment, and other real-life applications authentication

    Feature Level Fusion of Iris and Fingerprint Biometrics for personal identification using Artificial Neural Network

    Get PDF
    This research presents the multi –modal biometric system for iris and fingerprint This paper presents the Feature level fusion using wavelet for combining two unimodal biometric system. Gabor transform is used for feature extraction and wavelet transformation for fusion of iris and fingerprint. The system applied artificial neural network technique for recognizing whether the user is genuine (accepted) or impostor (rejected). The proposed system is for multimodal database comprising of 20 samples. The performance of the system is tested on a database prepared to find accuracy, false acceptance rate and false rejection rate. DOI: 10.17762/ijritcc2321-8169.15077

    Free-text keystroke dynamics authentication with a reduced need for training and language independency

    Get PDF
    This research aims to overcome the drawback of the large amount of training data required for free-text keystroke dynamics authentication. A new key-pairing method, which is based on the keyboard’s key-layout, has been suggested to achieve that. The method extracts several timing features from specific key-pairs. The level of similarity between a user’s profile data and his or her test data is then used to decide whether the test data was provided by the genuine user. The key-pairing technique was developed to use the smallest amount of training data in the best way possible which reduces the requirement for typing long text in the training stage. In addition, non-conventional features were also defined and extracted from the input stream typed by the user in order to understand more of the users typing behaviours. This helps the system to assemble a better idea about the user’s identity from the smallest amount of training data. Non-conventional features compute the average of users performing certain actions when typing a whole piece of text. Results were obtained from the tests conducted on each of the key-pair timing features and the non-conventional features, separately. An FAR of 0.013, 0.0104 and an FRR of 0.384, 0.25 were produced by the timing features and non-conventional features, respectively. Moreover, the fusion of these two feature sets was utilized to enhance the error rates. The feature-level fusion thrived to reduce the error rates to an FAR of 0.00896 and an FRR of 0.215 whilst decision-level fusion succeeded in achieving zero FAR and FRR. In addition, keystroke dynamics research suffers from the fact that almost all text included in the studies is typed in English. Nevertheless, the key-pairing method has the advantage of being language-independent. This allows for it to be applied on text typed in other languages. In this research, the key-pairing method was applied to text in Arabic. The results produced from the test conducted on Arabic text were similar to those produced from English text. This proves the applicability of the key-pairing method on a language other than English even if that language has a completely different alphabet and characteristics. Moreover, experimenting with texts in English and Arabic produced results showing a direct relation between the users’ familiarity with the language and the performance of the authentication system

    Improving the performance of free-text keystroke dynamics authentication by fusion

    Get PDF
    Free-text keystroke dynamics is invariably hampered by the huge amount of data needed to train the system. This problem has been addressed in this paper by suggesting a system that combines two methods, both of which provide a reduced training requirement for user authentication using free-text keystrokes. The two methods were fused to achieve error rates lower than those produced by each method separately. Two fusion schemes, namely: decision-level fusion and feature-level fusion, were applied. Feature-level fusion was done by concatenating two sets of features before the learning stage. The two sets of features were: a timing feature set and a non-conventional feature set. Moreover, decision-level fusion was used to merge the output of two methods using majority voting. One is Support Vector Machines (SVMs) together with Ant Colony Optimization (ACO) feature selection and the other is decision trees (DTs). Even though the classifiers using the parameters merged at feature level produced low error rates, its results were outperformed by the results achieved by the decision-level fusion scheme. Decision-level fusion was employed to achieve the best performance of 0.00% False Accept Rate (FAR) and 0.00% False Reject Rate (FRR)

    Score Fusion Using Hybrid Bacterial Foraging Optimization And Particle Swarm Optimization (Bfo-Pso) For Hand-Based Multimodal Biometrics

    Get PDF
    In recent times of biometric authentication, the influence of swarm intelligence algorithms role-played in enhancing the performance accuracy to a greater extent. Most researches related to Swarm Intelligence (SI) algorithms have done on the particular, due to the need to integrate more than one SI algorithm for better results. Therefore, this research is focused on the hand-based multimodal biometric score fusion which incorporates the scores of hand-based multimodalities and the optimal weights using Hybrid Bacterial Foraging - Particle Swarm Optimization (HBF-PSO) algorithm

    Non-conventional keystroke dynamics for user authentication

    Get PDF
    This paper introduces an approach for user authentication using free-text keystroke dynamics which incorporates the use of non-conventional keystroke features. Semi-timing features along with editing features are extracted from the user’s typing stream. Decision trees were exploited to classify each of the user’s data. In parallel for comparison, support vector machines (SVMs) were also used for classification in association with an ant colony optimization (ACO) feature selection technique. The results obtained from this study are encouraging as low false accept rates (FAR) and false reject rates (FRR) were achieved in the experimentation phase. This signifies that satisfactory overall system performance was achieved by using the typing attributes in the proposed approach. Thus, the use of non-conventional typing features improves the understanding of human typing behavior and therefore, provides significant contribution to the authentication system
    corecore