2,563 research outputs found

    Fusing Censored Dependent Data for Distributed Detection

    Full text link
    In this paper, we consider a distributed detection problem for a censoring sensor network where each sensor's communication rate is significantly reduced by transmitting only "informative" observations to the Fusion Center (FC), and censoring those deemed "uninformative". While the independence of data from censoring sensors is often assumed in previous research, we explore spatial dependence among observations. Our focus is on designing the fusion rule under the Neyman-Pearson (NP) framework that takes into account the spatial dependence among observations. Two transmission scenarios are considered, one where uncensored observations are transmitted directly to the FC and second where they are first quantized and then transmitted to further improve transmission efficiency. Copula-based Generalized Likelihood Ratio Test (GLRT) for censored data is proposed with both continuous and discrete messages received at the FC corresponding to different transmission strategies. We address the computational issues of the copula-based GLRTs involving multidimensional integrals by presenting more efficient fusion rules, based on the key idea of injecting controlled noise at the FC before fusion. Although, the signal-to-noise ratio (SNR) is reduced by introducing controlled noise at the receiver, simulation results demonstrate that the resulting noise-aided fusion approach based on adding artificial noise performs very closely to the exact copula-based GLRTs. Copula-based GLRTs and their noise-aided counterparts by exploiting the spatial dependence greatly improve detection performance compared with the fusion rule under independence assumption

    Energy efficient scheme based on simultaneous transmission of the local decisions in cooperative spectrum sensing

    Get PDF
    A common concern regarding cooperative spectrum sensing (CSS) schemes is the occupied bandwidth and the energy consumption during the transmissions of sensing information to the fusion center over the reporting control channels. This concern is intensified if the number of cooperating secondary users in the network is large. This article presents a new fusion strategy for a CSS scheme, aiming at increasing the energy efficiency of a recently proposed bandwidth-efficient fusion scheme. Analytical results and computational simulations unveil a high increase in energy efficiency when compared with the original approach, yet achieving better performances in some situations, and lower implementation complexity

    Decision Fusion with Unknown Sensor Detection Probability

    Full text link
    In this correspondence we study the problem of channel-aware decision fusion when the sensor detection probability is not known at the decision fusion center. Several alternatives proposed in the literature are compared and new fusion rules (namely 'ideal sensors' and 'locally-optimum detection') are proposed, showing attractive performance and linear complexity. Simulations are provided to compare the performance of the aforementioned rules.Comment: To appear in IEEE Signal Processing Letter

    Rician MIMO Channel- and Jamming-Aware Decision Fusion

    Full text link
    In this manuscript we study channel-aware decision fusion (DF) in a wireless sensor network (WSN) where: (i) the sensors transmit their decisions simultaneously for spectral efficiency purposes and the DF center (DFC) is equipped with multiple antennas; (ii) each sensor-DFC channel is described via a Rician model. As opposed to the existing literature, in order to account for stringent energy constraints in the WSN, only statistical channel information is assumed for the non-line-of sight (scattered) fading terms. For such a scenario, sub-optimal fusion rules are developed in order to deal with the exponential complexity of the likelihood ratio test (LRT) and impractical (complete) system knowledge. Furthermore, the considered model is extended to the case of (partially unknown) jamming-originated interference. Then the obtained fusion rules are modified with the use of composite hypothesis testing framework and generalized LRT. Coincidence and statistical equivalence among them are also investigated under some relevant simplified scenarios. Numerical results compare the proposed rules and highlight their jammingsuppression capability.Comment: Accepted in IEEE Transactions on Signal Processing 201

    Decentralized detection for censored binary observations with statistical dependence

    Get PDF
    This paper analyzes the problem of distributed detection in a sensor network of binary sensors. In particular, statistical dependence between local decisions (at binary sensors) is assumed, and two complementary methods to save energy have been considered: censoring, to avoid some transmissions from sensors to fusion center, and a sleep and wake up random schedule at local sensors. The effect of possible failures in transmission has been also included, considering the probability of having a successful transmission from a sensor to the fusion center. In this scenario, the necessary statistical information has been identified, the optimal decision rule at the fusion center has been obtained, and some examples have been used to analyze the effect of statistical dependence in a simple network with two sensors

    Performance and Detection of M-ary Frequency Shift Keying in Triple Layer Wireless Sensor Network

    Full text link
    This paper proposes an innovative triple layer Wireless Sensor Network (WSN) system, which monitors M-ary events like temperature, pressure, humidity, etc. with the help of geographically distributed sensors. The sensors convey signals to the fusion centre using M-ary Frequency Shift Keying (MFSK)modulation scheme over independent Rayleigh fading channels. At the fusion centre, detection takes place with the help of Selection Combining (SC) diversity scheme, which assures a simple and economical receiver circuitry. With the aid of various simulations, the performance and efficacy of the system has been analyzed by varying modulation levels, number of local sensors and probability of correct detection by the sensors. The study endeavors to prove that triple layer WSN system is an economical and dependable system capable of correct detection of M-ary events by integrating frequency diversity together with antenna diversity.Comment: 13 pages; International Journal of Computer Networks & Communications (IJCNC) Vol.4, No.4, July 201

    On the Existence of an MVU Estimator for Target Localization with Censored, Noise Free Binary Detectors

    Full text link
    The problem of target localization with censored noise free binary detectors is considered. In this setting only the detecting sensors report their locations to the fusion center. It is proven that if the radius of detection is not known to the fusion center, a minimum variance unbiased (MVU) estimator does not exist. Also it is shown that when the radius is known the center of mass of the possible target region is the MVU estimator. In addition, a sub-optimum estimator is introduced whose performance is close to the MVU estimator but is preferred computationally. Furthermore, minimal sufficient statistics have been provided, both when the detection radius is known and when it is not. Simulations confirmed that the derived MVU estimator outperforms several heuristic location estimators.Comment: 25 pages, 9 figure

    Heterogeneous Sensor Signal Processing for Inference with Nonlinear Dependence

    Get PDF
    Inferring events of interest by fusing data from multiple heterogeneous sources has been an interesting and important topic in recent years. Several issues related to inference using heterogeneous data with complex and nonlinear dependence are investigated in this dissertation. We apply copula theory to characterize the dependence among heterogeneous data. In centralized detection, where sensor observations are available at the fusion center (FC), we study copula-based fusion. We design detection algorithms based on sample-wise copula selection and mixture of copulas model in different scenarios of the true dependence. The proposed approaches are theoretically justified and perform well when applied to fuse acoustic and seismic sensor data for personnel detection. Besides traditional sensors, the access to the massive amount of social media data provides a unique opportunity for extracting information about unfolding events. We further study how sensor networks and social media complement each other in facilitating the data-to-decision making process. We propose a copula-based joint characterization of multiple dependent time series from sensors and social media. As a proof-of-concept, this model is applied to the fusion of Google Trends (GT) data and stock/flu data for prediction, where the stock/flu data serves as a surrogate for sensor data. In energy constrained networks, local observations are compressed before they are transmitted to the FC. In these cases, conditional dependence and heterogeneity complicate the system design particularly. We consider the classification of discrete random signals in Wireless Sensor Networks (WSNs), where, for communication efficiency, only local decisions are transmitted. We derive the necessary conditions for the optimal decision rules at the sensors and the FC by introducing a hidden random variable. An iterative algorithm is designed to search for the optimal decision rules. Its convergence and asymptotical optimality are also proved. The performance of the proposed scheme is illustrated for the distributed Automatic Modulation Classification (AMC) problem. Censoring is another communication efficient strategy, in which sensors transmit only informative observations to the FC, and censor those deemed uninformative . We design the detectors that take into account the spatial dependence among observations. Fusion rules for censored data are proposed with continuous and discrete local messages, respectively. Their computationally efficient counterparts based on the key idea of injecting controlled noise at the FC before fusion are also investigated. In this thesis, with heterogeneous and dependent sensor observations, we consider not only inference in parallel frameworks but also the problem of collaborative inference where collaboration exists among local sensors. Each sensor forms coalition with other sensors and shares information within the coalition, to maximize its inference performance. The collaboration strategy is investigated under a communication constraint. To characterize the influence of inter-sensor dependence on inference performance and thus collaboration strategy, we quantify the gain and loss in forming a coalition by introducing the copula-based definitions of diversity gain and redundancy loss for both estimation and detection problems. A coalition formation game is proposed for the distributed inference problem, through which the information contained in the inter-sensor dependence is fully explored and utilized for improved inference performance
    • …
    corecore