2,281 research outputs found

    A robust nonlinear scale space change detection approach for SAR images

    Get PDF
    In this paper, we propose a change detection approach based on nonlinear scale space analysis of change images for robust detection of various changes incurred by natural phenomena and/or human activities in Synthetic Aperture Radar (SAR) images using Maximally Stable Extremal Regions (MSERs). To achieve this, a variant of the log-ratio image of multitemporal images is calculated which is followed by Feature Preserving Despeckling (FPD) to generate nonlinear scale space images exhibiting different trade-offs in terms of speckle reduction and shape detail preservation. MSERs of each scale space image are found and then combined through a decision level fusion strategy, namely "selective scale fusion" (SSF), where contrast and boundary curvature of each MSER are considered. The performance of the proposed method is evaluated using real multitemporal high resolution TerraSAR-X images and synthetically generated multitemporal images composed of shapes with several orientations, sizes, and backscatter amplitude levels representing a variety of possible signatures of change. One of the main outcomes of this approach is that different objects having different sizes and levels of contrast with their surroundings appear as stable regions at different scale space images thus the fusion of results from scale space images yields a good overall performance

    A partially unsupervised cascade classifier for the analysis of multitemporal remote-sensing images

    Get PDF
    A partially unsupervised approach to the classification of multitemporal remote-sensing images is presented. Such an approach allows the automatic classification of a remote-sensing image for which training data are not available, drawing on the information derived from an image acquired in the same area at a previous time. In particular, the proposed technique is based on a cascade classifier approach and on a specific formulation of the expectation-maximization (EM) algorithm used for the unsupervised estimation of the statistical parameters of the image to be classified. The results of experiments carried out on a multitemporal data set confirm the validity of the proposed approach

    Learning Spectral-Spatial-Temporal Features via a Recurrent Convolutional Neural Network for Change Detection in Multispectral Imagery

    Full text link
    Change detection is one of the central problems in earth observation and was extensively investigated over recent decades. In this paper, we propose a novel recurrent convolutional neural network (ReCNN) architecture, which is trained to learn a joint spectral-spatial-temporal feature representation in a unified framework for change detection in multispectral images. To this end, we bring together a convolutional neural network (CNN) and a recurrent neural network (RNN) into one end-to-end network. The former is able to generate rich spectral-spatial feature representations, while the latter effectively analyzes temporal dependency in bi-temporal images. In comparison with previous approaches to change detection, the proposed network architecture possesses three distinctive properties: 1) It is end-to-end trainable, in contrast to most existing methods whose components are separately trained or computed; 2) it naturally harnesses spatial information that has been proven to be beneficial to change detection task; 3) it is capable of adaptively learning the temporal dependency between multitemporal images, unlike most of algorithms that use fairly simple operation like image differencing or stacking. As far as we know, this is the first time that a recurrent convolutional network architecture has been proposed for multitemporal remote sensing image analysis. The proposed network is validated on real multispectral data sets. Both visual and quantitative analysis of experimental results demonstrates competitive performance in the proposed mode

    Assessment of multi-temporal, multi-sensor radar and ancillary spatial data for grasslands monitoring in Ireland using machine learning approaches

    Get PDF
    Accurate inventories of grasslands are important for studies of carbon dynamics, biodiversity conservation and agricultural management. For regions with persistent cloud cover the use of multi-temporal synthetic aperture radar (SAR) data provides an attractive solution for generating up-to-date inventories of grasslands. This is even more appealing considering the data that will be available from upcoming missions such as Sentinel-1 and ALOS-2. In this study, the performance of three machine learning algorithms; Random Forests (RF), Support Vector Machines (SVM) and the relatively underused Extremely Randomised Trees (ERT) is evaluated for discriminating between grassland types over two large heterogeneous areas of Ireland using multi-temporal, multi-sensor radar and ancillary spatial datasets. A detailed accuracy assessment shows the efficacy of the three algorithms to classify different types of grasslands. Overall accuracies ≄ 88.7% (with kappa coefficient of 0.87) were achieved for the single frequency classifications and maximum accuracies of 97.9% (kappa coefficient of 0.98) for the combined frequency classifications. For most datasets, the ERT classifier outperforms SVM and RF

    Multisource and Multitemporal Data Fusion in Remote Sensing

    Get PDF
    The sharp and recent increase in the availability of data captured by different sensors combined with their considerably heterogeneous natures poses a serious challenge for the effective and efficient processing of remotely sensed data. Such an increase in remote sensing and ancillary datasets, however, opens up the possibility of utilizing multimodal datasets in a joint manner to further improve the performance of the processing approaches with respect to the application at hand. Multisource data fusion has, therefore, received enormous attention from researchers worldwide for a wide variety of applications. Moreover, thanks to the revisit capability of several spaceborne sensors, the integration of the temporal information with the spatial and/or spectral/backscattering information of the remotely sensed data is possible and helps to move from a representation of 2D/3D data to 4D data structures, where the time variable adds new information as well as challenges for the information extraction algorithms. There are a huge number of research works dedicated to multisource and multitemporal data fusion, but the methods for the fusion of different modalities have expanded in different paths according to each research community. This paper brings together the advances of multisource and multitemporal data fusion approaches with respect to different research communities and provides a thorough and discipline-specific starting point for researchers at different levels (i.e., students, researchers, and senior researchers) willing to conduct novel investigations on this challenging topic by supplying sufficient detail and references

    Classifying multisensor remote sensing data : Concepts, Algorithms and Applications

    Get PDF
    Today, a large quantity of the Earth’s land surface has been affected by human induced land cover changes. Detailed knowledge of the land cover is elementary for several decision support and monitoring systems. Earth-observation (EO) systems have the potential to frequently provide information on land cover. Thus many land cover classifications are performed based on remotely sensed EO data. In this context, it has been shown that the performance of remote sensing applications is further improved by multisensor data sets, such as combinations of synthetic aperture radar (SAR) and multispectral imagery. The two systems operate in different wavelength domains and therefore provide different yet complementary information on land cover. Considering the increase in revisit times and better spatial resolutions of recent and upcoming systems like TerraSAR-X (11 days; up to1 m), Radarsat-2 (24 days; up to 3 m), or RapidEye constellation (up to 1 day; 5 m), multisensor approaches become even more promising. However, these data sets with high spatial and temporal resolution might become very large and complex. Commonly used statistical pattern recognition methods are usually not appropriate for the classification of multisensor data sets. Hence, one of the greatest challenges in remote sensing might be the development of adequate concepts for classifying multisensor imagery. The presented study aims at an adequate classification of multisensor data sets, including SAR data and multispectral images. Different conventional classifiers and recent developments are used, such as support vector machines (SVM) and random forests (RF), which are well known in the field of machine learning and pattern recognition. Furthermore, the impact of image segmentation on the classification accuracy is investigated and the value of a multilevel concept is discussed. To increase the performance of the algorithms in terms of classification accuracy, the concept of SVM is modified and combined with RF for optimized decision making. The results clearly demonstrate that the use of multisensor imagery is worthwhile. Irrespective of the classification method used, classification accuracies increase by combining SAR and multispectral imagery. Nevertheless, SVM and RF are more adequate for classifying multisensor data sets and significantly outperform conventional classifier algorithms in terms of accuracy. The finally introduced multisensor-multilevel classification strategy, which is based on the sequential use of SVM and RF, outperforms all other approaches. The proposed concept achieves an accuracy of 84.9%. This is significantly higher than all single-source results and also better than those achieved on any other combination of data. Both aspects, i.e. the fusion of SAR and multispectral data as well as the integration of multiple segmentation scales, improve the results. Contrary to the high accuracy value by the proposed concept, the pixel-based classification on single-source data sets achieves a maximal accuracy of 65% (SAR) and 69.8% (multispectral) respectively. The findings and good performance of the presented strategy are underlined by the successful application of the approach to data sets from a second year. Based on the results from this work it can be concluded that the suggested strategy is particularly interesting with regard to recent and future satellite missions

    Multi-Classifiers And Decision Fusion For Robust Statistical Pattern Recognition With Applications To Hyperspectral Classification

    Get PDF
    In this dissertation, a multi-classifier, decision fusion framework is proposed for robust classification of high dimensional data in small-sample-size conditions. Such datasets present two key challenges. (1) The high dimensional feature spaces compromise the classifiers’ generalization ability in that the classifier tends to overit decision boundaries to the training data. This phenomenon is commonly known as the Hughes phenomenon in the pattern classification community. (2) The small-sample-size of the training data results in ill-conditioned estimates of its statistics. Most classifiers rely on accurate estimation of these statistics for modeling training data and labeling test data, and hence ill-conditioned statistical estimates result in poorer classification performance. This dissertation tests the efficacy of the proposed algorithms to classify primarily remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, since these applications naturally result in very high dimensional feature spaces and often do not have sufficiently large training datasets to support the dimensionality of the feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-optimal, in that they utilize a small subset of the rich spectral information provided by hyperspectral data for classification. In contrast, the approach proposed in this dissertation utilizes the entire high dimensional feature space for classification by identifying a suitable partition of this space, employing a bank-of-classifiers to perform “local” classification over this partition, and then merging these local decisions using an appropriate decision fusion mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in kernel induced spaces) are also proposed within this framework to improve its robustness over a wide range of fidelity conditions. Experimental results demonstrate that the proposed framework results in significant improvements in classification accuracies (as high as a 12% increase) over conventional approaches

    Multi-Classifiers And Decision Fusion For Robust Statistical Pattern Recognition With Applications To Hyperspectral Classification

    Get PDF
    In this dissertation, a multi-classifier, decision fusion framework is proposed for robust classification of high dimensional data in small-sample-size conditions. Such datasets present two key challenges. (1) The high dimensional feature spaces compromise the classifiers’ generalization ability in that the classifier tends to overit decision boundaries to the training data. This phenomenon is commonly known as the Hughes phenomenon in the pattern classification community. (2) The small-sample-size of the training data results in ill-conditioned estimates of its statistics. Most classifiers rely on accurate estimation of these statistics for modeling training data and labeling test data, and hence ill-conditioned statistical estimates result in poorer classification performance. This dissertation tests the efficacy of the proposed algorithms to classify primarily remotely sensed hyperspectral data and secondarily diagnostic digital mammograms, since these applications naturally result in very high dimensional feature spaces and often do not have sufficiently large training datasets to support the dimensionality of the feature space. Conventional approaches, such as Stepwise LDA (S-LDA) are sub-optimal, in that they utilize a small subset of the rich spectral information provided by hyperspectral data for classification. In contrast, the approach proposed in this dissertation utilizes the entire high dimensional feature space for classification by identifying a suitable partition of this space, employing a bank-of-classifiers to perform “local” classification over this partition, and then merging these local decisions using an appropriate decision fusion mechanism. Adaptive classifier weight assignment and nonlinear pre-processing (in kernel induced spaces) are also proposed within this framework to improve its robustness over a wide range of fidelity conditions. Experimental results demonstrate that the proposed framework results in significant improvements in classification accuracies (as high as a 12% increase) over conventional approaches
    • 

    corecore