40,059 research outputs found

    An investigation into machine learning approaches for forecasting spatio-temporal demand in ride-hailing service

    Full text link
    In this paper, we present machine learning approaches for characterizing and forecasting the short-term demand for on-demand ride-hailing services. We propose the spatio-temporal estimation of the demand that is a function of variable effects related to traffic, pricing and weather conditions. With respect to the methodology, a single decision tree, bootstrap-aggregated (bagged) decision trees, random forest, boosted decision trees, and artificial neural network for regression have been adapted and systematically compared using various statistics, e.g. R-square, Root Mean Square Error (RMSE), and slope. To better assess the quality of the models, they have been tested on a real case study using the data of DiDi Chuxing, the main on-demand ride hailing service provider in China. In the current study, 199,584 time-slots describing the spatio-temporal ride-hailing demand has been extracted with an aggregated-time interval of 10 mins. All the methods are trained and validated on the basis of two independent samples from this dataset. The results revealed that boosted decision trees provide the best prediction accuracy (RMSE=16.41), while avoiding the risk of over-fitting, followed by artificial neural network (20.09), random forest (23.50), bagged decision trees (24.29) and single decision tree (33.55).Comment: Currently under review for journal publicatio

    Random model trees: an effective and scalable regression method

    Get PDF
    We present and investigate ensembles of randomized model trees as a novel regression method. Such ensembles combine the scalability of tree-based methods with predictive performance rivaling the state of the art in numeric prediction. An extensive empirical investigation shows that Random Model Trees produce predictive performance which is competitive with state-of-the-art methods like Gaussian Processes Regression or Additive Groves of Regression Trees. The training and optimization of Random Model Trees scales better than Gaussian Processes Regression to larger datasets, and enjoys a constant advantage over Additive Groves of the order of one to two orders of magnitude
    corecore