2,308 research outputs found

    A Survey on Hybrid Techniques Using SVM

    Get PDF
    Support Vector Machines (SVM) with linear or nonlinear kernels has become one of the most promising learning algorithms for classification as well as for regression. All the multilayer perceptron (MLP),Radial Basic Function(RBF) and Learning Polynomials are also worked efficiently with SVM. SVM is basically derived from statistical Learning Theory and it is very powerful statistical tool. The basic principal for the SVM is structural risk minimization and closely related to regularization theory. SVM is a group of supervised learning techniques or methods, which is used to do for classification or regression. In this paper discussed the importance of Support Vector Machines in various areas. This paper discussing the efficiency of SVM with the combination of other classification techniques

    Wind turbine gearbox condition monitoring based on class of support vector regression models and residual analysis

    Get PDF
    The intelligent condition monitoring of wind turbines reduces their downtime and increases reliability. In this manuscript, a feature selection-based methodology that essentially works on regression models is used for identifying faulty scenarios. Supervisory control and data acquisition (SCADA) data with 1009 samples from one year and one month before failure are considered. Gearbox oil and bearing temperatures are treated as target variables with all the other variables used for the prediction model. Neighborhood component analysis (NCA) as a feature selection technique is employed to select the best features and prediction performance for several machine learning regression models is assessed. The results reveal that twin support vector regression (99.91%) and decision trees (98.74%) yield the highest accuracy for gearbox oil and bearing temperatures respectively. It is observed that NCA increases the accuracy and thus reliability of the condition monitoring system. Furthermore, the residuals from the class of support vector regression (SVR) models are tested from a statistical point of view. Diebold–Mariano and Durbin–Watson tests are carried out to establish the robustness of the tested models

    Machine Learning in Manufacturing towards Industry 4.0: From ‘For Now’ to ‘Four-Know’

    Get PDF
    While attracting increasing research attention in science and technology, Machine Learning (ML) is playing a critical role in the digitalization of manufacturing operations towards Industry 4.0. Recently, ML has been applied in several fields of production engineering to solve a variety of tasks with different levels of complexity and performance. However, in spite of the enormous number of ML use cases, there is no guidance or standard for developing ML solutions from ideation to deployment. This paper aims to address this problem by proposing an ML application roadmap for the manufacturing industry based on the state-of-the-art published research on the topic. First, this paper presents two dimensions for formulating ML tasks, namely, ’Four-Know’ (Know-what, Know-why, Know-when, Know-how) and ’Four-Level’ (Product, Process, Machine, System). These are used to analyze ML development trends in manufacturing. Then, the paper provides an implementation pipeline starting from the very early stages of ML solution development and summarizes the available ML methods, including supervised learning methods, semi-supervised methods, unsupervised methods, and reinforcement methods, along with their typical applications. Finally, the paper discusses the current challenges during ML applications and provides an outline of possible directions for future developments

    Support vector machines to detect physiological patterns for EEG and EMG-based human-computer interaction:a review

    Get PDF
    Support vector machines (SVMs) are widely used classifiers for detecting physiological patterns in human-computer interaction (HCI). Their success is due to their versatility, robustness and large availability of free dedicated toolboxes. Frequently in the literature, insufficient details about the SVM implementation and/or parameters selection are reported, making it impossible to reproduce study analysis and results. In order to perform an optimized classification and report a proper description of the results, it is necessary to have a comprehensive critical overview of the applications of SVM. The aim of this paper is to provide a review of the usage of SVM in the determination of brain and muscle patterns for HCI, by focusing on electroencephalography (EEG) and electromyography (EMG) techniques. In particular, an overview of the basic principles of SVM theory is outlined, together with a description of several relevant literature implementations. Furthermore, details concerning reviewed papers are listed in tables and statistics of SVM use in the literature are presented. Suitability of SVM for HCI is discussed and critical comparisons with other classifiers are reported

    Applications of Artificial Intelligence in Power Systems

    Get PDF
    Artificial intelligence tools, which are fast, robust and adaptive can overcome the drawbacks of traditional solutions for several power systems problems. In this work, applications of AI techniques have been studied for solving two important problems in power systems. The first problem is static security evaluation (SSE). The objective of SSE is to identify the contingencies in planning and operations of power systems. Numerical conventional solutions are time-consuming, computationally expensive, and are not suitable for online applications. SSE may be considered as a binary-classification, multi-classification or regression problem. In this work, multi-support vector machine is combined with several evolutionary computation algorithms, including particle swarm optimization (PSO), differential evolution, Ant colony optimization for the continuous domain, and harmony search techniques to solve the SSE. Moreover, support vector regression is combined with modified PSO with a proposed modification on the inertia weight in order to solve the SSE. Also, the correct accuracy of classification, the speed of training, and the final cost of using power equipment heavily depend on the selected input features. In this dissertation, multi-object PSO has been used to solve this problem. Furthermore, a multi-classifier voting scheme is proposed to get the final test output. The classifiers participating in the voting scheme include multi-SVM with different types of kernels and random forests with an adaptive number of trees. In short, the development and performance of different machine learning tools combined with evolutionary computation techniques have been studied to solve the online SSE. The performance of the proposed techniques is tested on several benchmark systems, namely the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus power systems. The second problem is the non-convex, nonlinear, and non-differentiable economic dispatch (ED) problem. The purpose of solving the ED is to improve the cost-effectiveness of power generation. To solve ED with multi-fuel options, prohibited operating zones, valve point effect, and transmission line losses, genetic algorithm (GA) variant-based methods, such as breeder GA, fast navigating GA, twin removal GA, kite GA, and United GA are used. The IEEE systems with 6-units, 10-units, and 15-units are used to study the efficiency of the algorithms

    Applications of Artificial Intelligence in Power Systems

    Get PDF
    Artificial intelligence tools, which are fast, robust and adaptive can overcome the drawbacks of traditional solutions for several power systems problems. In this work, applications of AI techniques have been studied for solving two important problems in power systems. The first problem is static security evaluation (SSE). The objective of SSE is to identify the contingencies in planning and operations of power systems. Numerical conventional solutions are time-consuming, computationally expensive, and are not suitable for online applications. SSE may be considered as a binary-classification, multi-classification or regression problem. In this work, multi-support vector machine is combined with several evolutionary computation algorithms, including particle swarm optimization (PSO), differential evolution, Ant colony optimization for the continuous domain, and harmony search techniques to solve the SSE. Moreover, support vector regression is combined with modified PSO with a proposed modification on the inertia weight in order to solve the SSE. Also, the correct accuracy of classification, the speed of training, and the final cost of using power equipment heavily depend on the selected input features. In this dissertation, multi-object PSO has been used to solve this problem. Furthermore, a multi-classifier voting scheme is proposed to get the final test output. The classifiers participating in the voting scheme include multi-SVM with different types of kernels and random forests with an adaptive number of trees. In short, the development and performance of different machine learning tools combined with evolutionary computation techniques have been studied to solve the online SSE. The performance of the proposed techniques is tested on several benchmark systems, namely the IEEE 9-bus, 14-bus, 39-bus, 57-bus, 118-bus, and 300-bus power systems. The second problem is the non-convex, nonlinear, and non-differentiable economic dispatch (ED) problem. The purpose of solving the ED is to improve the cost-effectiveness of power generation. To solve ED with multi-fuel options, prohibited operating zones, valve point effect, and transmission line losses, genetic algorithm (GA) variant-based methods, such as breeder GA, fast navigating GA, twin removal GA, kite GA, and United GA are used. The IEEE systems with 6-units, 10-units, and 15-units are used to study the efficiency of the algorithms
    • …
    corecore