7,031 research outputs found

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Power-Assist Wheelchair Attachment

    Get PDF
    This senior design project sought to combine the best characteristics of manual and power wheelchairs by creating a battery-powered attachment to propel a manual wheelchair. The primary customer needs were determined to be affordability, portability, and travel on uneven surfaces. After the initial prototype, using a hub motor proved unsuccessful, so a second design was developed that consisted of a gear reduction motor and drive wheel connected to the back of the wheelchair by a trailing arm that could be easily attached/detached from the frame. The prototype of the second design succeeded in meeting most of the project goals related to cost, off-road capability, inclines, and range. Improvements can be made by reducing the attachment weight and improving user control of the device

    How a Diverse Research Ecosystem Has Generated New Rehabilitation Technologies: Review of NIDILRR’s Rehabilitation Engineering Research Centers

    Get PDF
    Over 50 million United States citizens (1 in 6 people in the US) have a developmental, acquired, or degenerative disability. The average US citizen can expect to live 20% of his or her life with a disability. Rehabilitation technologies play a major role in improving the quality of life for people with a disability, yet widespread and highly challenging needs remain. Within the US, a major effort aimed at the creation and evaluation of rehabilitation technology has been the Rehabilitation Engineering Research Centers (RERCs) sponsored by the National Institute on Disability, Independent Living, and Rehabilitation Research. As envisioned at their conception by a panel of the National Academy of Science in 1970, these centers were intended to take a “total approach to rehabilitation”, combining medicine, engineering, and related science, to improve the quality of life of individuals with a disability. Here, we review the scope, achievements, and ongoing projects of an unbiased sample of 19 currently active or recently terminated RERCs. Specifically, for each center, we briefly explain the needs it targets, summarize key historical advances, identify emerging innovations, and consider future directions. Our assessment from this review is that the RERC program indeed involves a multidisciplinary approach, with 36 professional fields involved, although 70% of research and development staff are in engineering fields, 23% in clinical fields, and only 7% in basic science fields; significantly, 11% of the professional staff have a disability related to their research. We observe that the RERC program has substantially diversified the scope of its work since the 1970’s, addressing more types of disabilities using more technologies, and, in particular, often now focusing on information technologies. RERC work also now often views users as integrated into an interdependent society through technologies that both people with and without disabilities co-use (such as the internet, wireless communication, and architecture). In addition, RERC research has evolved to view users as able at improving outcomes through learning, exercise, and plasticity (rather than being static), which can be optimally timed. We provide examples of rehabilitation technology innovation produced by the RERCs that illustrate this increasingly diversifying scope and evolving perspective. We conclude by discussing growth opportunities and possible future directions of the RERC program

    Government Response to Raising our sights: services for adults with profound intellectual and multiple disabilities

    Get PDF
    "This is the Government’s response to Raising our Sights report by Professor Jim Mansell published 19.3.10, commissioned by DH to respond to concerns raised in the consultation for Valuing People Now that adults with complex and multiple needs often do not receive the support they need to live independently." - Pag

    Understanding Interactions for Smart Wheelchair Navigation in Crowds

    Get PDF

    INTELIGENTNY WÓZEK INWALIDZKI Z NAPĘDEM ELEKTRYCZNYM: PROBLEMY I WYZWANIA W PODEJŚCIU PRODUKTOWYM

    Get PDF
    This paper focuses on intelligent assistant for power wheelchair (PW) usage in home conditions. Especially in the context of PW intelligent assistant as a consumer product. The main problematic aspects and challenges of smart PW in real application are noted. The approach to formation of system requirements and their classification is offered. The research results proposed and implemented in the ongoing Mobilis project for smart PW. Further prospects of research and development are noted. Also, it is stated that the implementation of smart PW technology opens possibilities to effective integration with new control methods (including brain-computer interfaces).Niniejszy artykuł koncentruje się na omówieniu problemów i wyzwań dotyczących nowego produktu, jakim jest Smart Power Wheelchair (SPW), czyli inteligentny asystent używany w elektrycznych wózkach inwalidzkich w warunkach domowych. Zwrócono szczególnie uwagę na ukazanie SPW jako nowego produktu konsumenckiego na rynku dóbr. Przedstawione zostały główne problematyczne aspekty i wyzwania dla SPW, które mogą pojawić się w warunkach rzeczywistych. Artykuł zawiera również propozycje dotyczące tworzenia wymagań systemowych oraz ich klasyfikacji. W kolejnej części artykułu przedstawiono wyniki badań, zrealizowanych w ramach projektu Mobilis, dzięki którym wdrożono szereg zmian w produkcie. Ponadto autorzy zapewniają o planowanych dalszych badaniach nad rozwojem produktu. Należy zwrócić uwagę, że wprowadzenie technologii SPW otwiera możliwości efektywnej integracji z nowymi metodami komunikacji (w tym z interfejsami mózg-komputer, z ang. brain-computer interfaces – BCI), z których szczególną korzyść będą miały osoby z niepełnosprawnością ruchową

    Human-in-the-Loop Cyber Physical Systems: Modular Designs for Semi-Autonomous Wheelchair Navigation

    Get PDF
    This project involves the design and development of a prototyping platform and open design framework for a semi-autonomous wheelchair to realize a human-in-the-loop cyber physical system as an assistive technology. The system is designed to assist physically locked-in individuals in navigating indoor environments through the use of modular sensor, communication, and control designs. This enables the user to share control with the wheelchair and allows the system to operate semi-autonomously with human-in-the-loop. The Wheelchair Add-on Modules (WAMs) developed for use in this project are platform-independent and facilitate development and application of semi- autonomous functionality
    corecore